Disambiguating Implicit Temporal Queries by Clustering Top Relevant Dates in Web Snippets

With the growing popularity of research in Temporal Information Retrieval (T-IR), a large amount of temporal data is ready to be exploited. The ability to exploit this information can be potentially useful for several tasks. For example, when querying "Football World Cup Germany", it would...

Full description

Saved in:
Bibliographic Details
Published in:2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Vol. 1; pp. 1 - 8
Main Authors: Campos, Ricardo, Jorge, Alipio Mario, Dias, Gael, Nunes, Celia
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2012
Subjects:
ISBN:9781467360579, 1467360570
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the growing popularity of research in Temporal Information Retrieval (T-IR), a large amount of temporal data is ready to be exploited. The ability to exploit this information can be potentially useful for several tasks. For example, when querying "Football World Cup Germany", it would be interesting to have two separate clusters {1974,2006} corresponding to each of the two temporal instances. However, clustering of search results by time is a non-trivial task that involves determining the most relevant dates associated to a query. In this paper, we propose a first approach to flat temporal clustering of search results. We rely on a second order co-occurrence similarity measure approach which first identifies top relevant dates. Documents are grouped at the year level, forming the temporal instances of the query. Experimental tests were performed using real-world text queries. We used several measures for evaluating the performance of the system and compared our approach with Carrot Web-snippet clustering engine. Both experiments were complemented with a user survey.
AbstractList With the growing popularity of research in Temporal Information Retrieval (T-IR), a large amount of temporal data is ready to be exploited. The ability to exploit this information can be potentially useful for several tasks. For example, when querying "Football World Cup Germany", it would be interesting to have two separate clusters {1974,2006} corresponding to each of the two temporal instances. However, clustering of search results by time is a non-trivial task that involves determining the most relevant dates associated to a query. In this paper, we propose a first approach to flat temporal clustering of search results. We rely on a second order co-occurrence similarity measure approach which first identifies top relevant dates. Documents are grouped at the year level, forming the temporal instances of the query. Experimental tests were performed using real-world text queries. We used several measures for evaluating the performance of the system and compared our approach with Carrot Web-snippet clustering engine. Both experiments were complemented with a user survey.
Author Dias, Gael
Nunes, Celia
Jorge, Alipio Mario
Campos, Ricardo
Author_xml – sequence: 1
  givenname: Ricardo
  surname: Campos
  fullname: Campos, Ricardo
  email: ricardo.campos@ipt.pt
  organization: LIAAD, INESC TEC, Portugal
– sequence: 2
  givenname: Alipio Mario
  surname: Jorge
  fullname: Jorge, Alipio Mario
  email: amjorge@fc.up.pt
  organization: LIAAD, INESC TEC, Portugal
– sequence: 3
  givenname: Gael
  surname: Dias
  fullname: Dias, Gael
  email: gael.dias@unicaen.fr
  organization: HULTECH/GREYC, Univ. of Caen Basse-Normandie, Caen, France
– sequence: 4
  givenname: Celia
  surname: Nunes
  fullname: Nunes, Celia
  email: celian@ubi.pt
  organization: Dept. of Math., Univ. of Beira Interior, Covilha, Portugal
BookMark eNotjMtKw0AYRkdU0NasXbiZF0ic-2VZWquBgqiR4qpM4j91JElDZir07Q3o6uNwDt8MXfSHHhC6paSglNj7bZmXi6pghLKCSnOGZkQrK4UxRJ2jzGpDhdJcEantFcpi_CaEUMIlJfQafaxCdF0d9keXQr_HZTe0oQkJV9ANh9G1-OUIY4CI6xNetseYJpq66jDgV2jhx_UJr1yagtDjLdT4rQ_DACneoEvv2gjZ_87R-_qhWj7lm-fHcrnY5F9MkpR7kEQ2urFgBRW69tIIDlrxSdjaeMu5ZV6zz0kJ7zlYUJoxV0vZCNVQPkd3f78BAHbDGDo3nnZKUmqk4b9zTVUO
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2012.158
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 0769548806
9780769548807
EndPage 8
ExternalDocumentID 6511858
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-h250t-fe505c7c9e94147bf5843e763fe59b8f93392f72d7bf4ff3e9e6722ab55c46c13
IEDL.DBID RIE
ISBN 9781467360579
1467360570
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423016400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu May 29 05:57:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h250t-fe505c7c9e94147bf5843e763fe59b8f93392f72d7bf4ff3e9e6722ab55c46c13
OpenAccessLink http://repositorio.inesctec.pt/handle/123456789/2921
PageCount 8
ParticipantIDs ieee_primary_6511858
PublicationCentury 2000
PublicationDate 2012-Dec.
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-Dec.
PublicationDecade 2010
PublicationTitle 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology
PublicationTitleAbbrev wi-iat
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001035101
ssj0001120833
Score 1.5940882
Snippet With the growing popularity of research in Temporal Information Retrieval (T-IR), a large amount of temporal data is ready to be exploited. The ability to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Classification algorithms
Clustering algorithms
Correlation
Dating Implicit Temporal Queries
Engines
Feature extraction
Mathematical models
Search engines
Temporal Clustering
Temporal Information Retrieval
Temporal Query Understanding
Vectors
Visualization
Web search
Title Disambiguating Implicit Temporal Queries by Clustering Top Relevant Dates in Web Snippets
URI https://ieeexplore.ieee.org/document/6511858
Volume 1
WOSCitedRecordID wos000423016400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG2QePCECsbf6cGjBdp163o0IJHEENQZ8ETW0uISHIRtJv73tt0ED168tWsPS79sfe333vsAuJkLzP2YcISpJIgaCI4E0xpJia0UVFCunM_sIxuNwumUj2vgdquFUUo58plq26bL5c9XsrBXZZ3AwmE_3AN7jAWlVmt3n2JTYlUK1fUxMejCc1ouy10yuGRr8VT1eWX1g7u8Mxmi4V1kqV6kjW3991-1VtxWM2j87yUPQWun2YPj7W50BGoqPQaNn6INsPqGm-Ctn2Txh0gW1uM7XcCho5QnOYxKk6olfCqs-XEGxRfsLQtrpGDnRas1fLZidBMK2LcIFSYpnCgBX9JkbbB31gKvg_uo94Cq-gro3QCfHGll4I9kkitOMWVCGzDiKfPDMQNchJp7BjxpRuZmiGrtKa4CRkgsfF_SQGLvBNTTVapOAZRCBjKO9VxSSrsyNE0Sai-ksTkOYszOQNOu1GxdWmjMqkU6__vxBTiwgShZI5egnm8KdQX25WeeZJtrF_dvKKSpvQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG0QTfSECsbf9uDRAe06th4NSFxEgjoDnsjatbgEB2Gbif-9bTfBgxdv7dpD03brW7_33gfAdcQQdUJMLUQ4toiC4BZzpbQ4R1oKyggVxmd24A6H3mRCRxVws9bCCCEM-Uw0ddHE8qMFz_VVWauj4bDjbYFthxDcLtRamxsVHRQrg6imjrDCF7ZRc2n2kkIma5Onsk5Lsx_Upq2xb_m3gSZ74SbSGeB_ZVsxh02_9r9h7oPGRrUHR-vz6ABURHIIaj9pG2D5FtfBWy9Oww8Wz7TLdzKDviGVxxkMCpuqOXzKtf1xCtkX7M5zbaWg-wWLJXzWcnS1GLCnMSqMEzgWDL4k8VKh77QBXvt3QffeKjMsWO8K-mSWFAoAcZdTQQkiLpMKjthCfXJUA2WepLaCT9LFkWoiUtqCio6Lccgch5MOR_YRqCaLRBwDyBnv8DCUESeEtLmnitiTtkdC9UOIkHsC6nqmpsvCRGNaTtLp34-vwO598DiYDvzhwxnY04tScEjOQTVb5eIC7PDPLE5Xl2YPfAMvOa0E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE%2FWIC%2FACM+International+Conferences+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Disambiguating+Implicit+Temporal+Queries+by+Clustering+Top+Relevant+Dates+in+Web+Snippets&rft.au=Campos%2C+Ricardo&rft.au=Jorge%2C+Alipio+Mario&rft.au=Dias%2C+Gael&rft.au=Nunes%2C+Celia&rft.date=2012-12-01&rft.pub=IEEE&rft.isbn=9781467360579&rft.volume=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FWI-IAT.2012.158&rft.externalDocID=6511858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467360579/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467360579/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467360579/sc.gif&client=summon&freeimage=true