Disambiguating Implicit Temporal Queries by Clustering Top Relevant Dates in Web Snippets
With the growing popularity of research in Temporal Information Retrieval (T-IR), a large amount of temporal data is ready to be exploited. The ability to exploit this information can be potentially useful for several tasks. For example, when querying "Football World Cup Germany", it would...
Saved in:
| Published in: | 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Vol. 1; pp. 1 - 8 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.12.2012
|
| Subjects: | |
| ISBN: | 9781467360579, 1467360570 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the growing popularity of research in Temporal Information Retrieval (T-IR), a large amount of temporal data is ready to be exploited. The ability to exploit this information can be potentially useful for several tasks. For example, when querying "Football World Cup Germany", it would be interesting to have two separate clusters {1974,2006} corresponding to each of the two temporal instances. However, clustering of search results by time is a non-trivial task that involves determining the most relevant dates associated to a query. In this paper, we propose a first approach to flat temporal clustering of search results. We rely on a second order co-occurrence similarity measure approach which first identifies top relevant dates. Documents are grouped at the year level, forming the temporal instances of the query. Experimental tests were performed using real-world text queries. We used several measures for evaluating the performance of the system and compared our approach with Carrot Web-snippet clustering engine. Both experiments were complemented with a user survey. |
|---|---|
| AbstractList | With the growing popularity of research in Temporal Information Retrieval (T-IR), a large amount of temporal data is ready to be exploited. The ability to exploit this information can be potentially useful for several tasks. For example, when querying "Football World Cup Germany", it would be interesting to have two separate clusters {1974,2006} corresponding to each of the two temporal instances. However, clustering of search results by time is a non-trivial task that involves determining the most relevant dates associated to a query. In this paper, we propose a first approach to flat temporal clustering of search results. We rely on a second order co-occurrence similarity measure approach which first identifies top relevant dates. Documents are grouped at the year level, forming the temporal instances of the query. Experimental tests were performed using real-world text queries. We used several measures for evaluating the performance of the system and compared our approach with Carrot Web-snippet clustering engine. Both experiments were complemented with a user survey. |
| Author | Dias, Gael Nunes, Celia Jorge, Alipio Mario Campos, Ricardo |
| Author_xml | – sequence: 1 givenname: Ricardo surname: Campos fullname: Campos, Ricardo email: ricardo.campos@ipt.pt organization: LIAAD, INESC TEC, Portugal – sequence: 2 givenname: Alipio Mario surname: Jorge fullname: Jorge, Alipio Mario email: amjorge@fc.up.pt organization: LIAAD, INESC TEC, Portugal – sequence: 3 givenname: Gael surname: Dias fullname: Dias, Gael email: gael.dias@unicaen.fr organization: HULTECH/GREYC, Univ. of Caen Basse-Normandie, Caen, France – sequence: 4 givenname: Celia surname: Nunes fullname: Nunes, Celia email: celian@ubi.pt organization: Dept. of Math., Univ. of Beira Interior, Covilha, Portugal |
| BookMark | eNotjMtKw0AYRkdU0NasXbiZF0ic-2VZWquBgqiR4qpM4j91JElDZir07Q3o6uNwDt8MXfSHHhC6paSglNj7bZmXi6pghLKCSnOGZkQrK4UxRJ2jzGpDhdJcEantFcpi_CaEUMIlJfQafaxCdF0d9keXQr_HZTe0oQkJV9ANh9G1-OUIY4CI6xNetseYJpq66jDgV2jhx_UJr1yagtDjLdT4rQ_DACneoEvv2gjZ_87R-_qhWj7lm-fHcrnY5F9MkpR7kEQ2urFgBRW69tIIDlrxSdjaeMu5ZV6zz0kJ7zlYUJoxV0vZCNVQPkd3f78BAHbDGDo3nnZKUmqk4b9zTVUO |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WI-IAT.2012.158 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 0769548806 9780769548807 |
| EndPage | 8 |
| ExternalDocumentID | 6511858 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIL |
| ID | FETCH-LOGICAL-h250t-fe505c7c9e94147bf5843e763fe59b8f93392f72d7bf4ff3e9e6722ab55c46c13 |
| IEDL.DBID | RIE |
| ISBN | 9781467360579 1467360570 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423016400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu May 29 05:57:39 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h250t-fe505c7c9e94147bf5843e763fe59b8f93392f72d7bf4ff3e9e6722ab55c46c13 |
| OpenAccessLink | http://repositorio.inesctec.pt/handle/123456789/2921 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_6511858 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-Dec. |
| PublicationDateYYYYMMDD | 2012-12-01 |
| PublicationDate_xml | – month: 12 year: 2012 text: 2012-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology |
| PublicationTitleAbbrev | wi-iat |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001035101 ssj0001120833 |
| Score | 1.5940882 |
| Snippet | With the growing popularity of research in Temporal Information Retrieval (T-IR), a large amount of temporal data is ready to be exploited. The ability to... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Classification algorithms Clustering algorithms Correlation Dating Implicit Temporal Queries Engines Feature extraction Mathematical models Search engines Temporal Clustering Temporal Information Retrieval Temporal Query Understanding Vectors Visualization Web search |
| Title | Disambiguating Implicit Temporal Queries by Clustering Top Relevant Dates in Web Snippets |
| URI | https://ieeexplore.ieee.org/document/6511858 |
| Volume | 1 |
| WOSCitedRecordID | wos000423016400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG2QePCECsbf6cGjBdp163o0IJHEENQZ8ETW0uISHIRtJv73tt0ED168tWsPS79sfe333vsAuJkLzP2YcISpJIgaCI4E0xpJia0UVFCunM_sIxuNwumUj2vgdquFUUo58plq26bL5c9XsrBXZZ3AwmE_3AN7jAWlVmt3n2JTYlUK1fUxMejCc1ouy10yuGRr8VT1eWX1g7u8Mxmi4V1kqV6kjW3991-1VtxWM2j87yUPQWun2YPj7W50BGoqPQaNn6INsPqGm-Ctn2Txh0gW1uM7XcCho5QnOYxKk6olfCqs-XEGxRfsLQtrpGDnRas1fLZidBMK2LcIFSYpnCgBX9JkbbB31gKvg_uo94Cq-gro3QCfHGll4I9kkitOMWVCGzDiKfPDMQNchJp7BjxpRuZmiGrtKa4CRkgsfF_SQGLvBNTTVapOAZRCBjKO9VxSSrsyNE0Sai-ksTkOYszOQNOu1GxdWmjMqkU6__vxBTiwgShZI5egnm8KdQX25WeeZJtrF_dvKKSpvQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG0QTfSECsbf9uDRAe06th4NSFxEgjoDnsjatbgEB2Gbif-9bTfBgxdv7dpD03brW7_33gfAdcQQdUJMLUQ4toiC4BZzpbQ4R1oKyggVxmd24A6H3mRCRxVws9bCCCEM-Uw0ddHE8qMFz_VVWauj4bDjbYFthxDcLtRamxsVHRQrg6imjrDCF7ZRc2n2kkIma5Onsk5Lsx_Upq2xb_m3gSZ74SbSGeB_ZVsxh02_9r9h7oPGRrUHR-vz6ABURHIIaj9pG2D5FtfBWy9Oww8Wz7TLdzKDviGVxxkMCpuqOXzKtf1xCtkX7M5zbaWg-wWLJXzWcnS1GLCnMSqMEzgWDL4k8VKh77QBXvt3QffeKjMsWO8K-mSWFAoAcZdTQQkiLpMKjthCfXJUA2WepLaCT9LFkWoiUtqCio6Lccgch5MOR_YRqCaLRBwDyBnv8DCUESeEtLmnitiTtkdC9UOIkHsC6nqmpsvCRGNaTtLp34-vwO598DiYDvzhwxnY04tScEjOQTVb5eIC7PDPLE5Xl2YPfAMvOa0E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE%2FWIC%2FACM+International+Conferences+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Disambiguating+Implicit+Temporal+Queries+by+Clustering+Top+Relevant+Dates+in+Web+Snippets&rft.au=Campos%2C+Ricardo&rft.au=Jorge%2C+Alipio+Mario&rft.au=Dias%2C+Gael&rft.au=Nunes%2C+Celia&rft.date=2012-12-01&rft.pub=IEEE&rft.isbn=9781467360579&rft.volume=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FWI-IAT.2012.158&rft.externalDocID=6511858 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467360579/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467360579/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467360579/sc.gif&client=summon&freeimage=true |

