Constant Overhead Quantum Fault-Tolerance with Quantum Expander Codes

We prove that quantum expander codes can be combined with quantum fault-tolerance techniques to achieve constant overhead: the ratio between the total number of physical qubits required for a quantum computation with faulty hardware and the number of logical qubits involved in the ideal computation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) S. 743 - 754
Hauptverfasser: Fawzi, Omar, Grospellier, Antoine, Leverrier, Anthony
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2018
Schlagworte:
ISSN:2575-8454
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We prove that quantum expander codes can be combined with quantum fault-tolerance techniques to achieve constant overhead: the ratio between the total number of physical qubits required for a quantum computation with faulty hardware and the number of logical qubits involved in the ideal computation is asymptotically constant, and can even be taken arbitrarily close to 1 in the limit o small physical error rate. This improves on the polylogarithmic overhead promised by the standard threshold theorem. To achieve this, we exploit a framework introduced by Gottesman together with a family of constant rate quantum codes, quantum expander codes. Our main technical contribution is to analyze an efficient decoding algorithm for these codes and prove that it remains robust in the presence of noisy syndrome measurements, a property which is crucial for fault-tolerant circuits. We also establish two additional features of the decoding algorithm that make it attractive for quantum computation: it can be parallelized to run in logarithmic depth, and is single-shot, meaning that it only requires a single round of noisy syndrome measurement.
AbstractList We prove that quantum expander codes can be combined with quantum fault-tolerance techniques to achieve constant overhead: the ratio between the total number of physical qubits required for a quantum computation with faulty hardware and the number of logical qubits involved in the ideal computation is asymptotically constant, and can even be taken arbitrarily close to 1 in the limit o small physical error rate. This improves on the polylogarithmic overhead promised by the standard threshold theorem. To achieve this, we exploit a framework introduced by Gottesman together with a family of constant rate quantum codes, quantum expander codes. Our main technical contribution is to analyze an efficient decoding algorithm for these codes and prove that it remains robust in the presence of noisy syndrome measurements, a property which is crucial for fault-tolerant circuits. We also establish two additional features of the decoding algorithm that make it attractive for quantum computation: it can be parallelized to run in logarithmic depth, and is single-shot, meaning that it only requires a single round of noisy syndrome measurement.
Author Leverrier, Anthony
Fawzi, Omar
Grospellier, Antoine
Author_xml – sequence: 1
  givenname: Omar
  surname: Fawzi
  fullname: Fawzi, Omar
– sequence: 2
  givenname: Antoine
  surname: Grospellier
  fullname: Grospellier, Antoine
– sequence: 3
  givenname: Anthony
  surname: Leverrier
  fullname: Leverrier, Anthony
BookMark eNo9jMtKxEAQAEdRcLN69uAlP5DY88p0jhISFRaCuJ6XzqQlkd3JkoePv1dQPBVFQUXiLAyBhbiWkEoJ-W1VF8-pAokpALjsRETSasyM0iBPxUpZZxM01lyIaJreAAxYMCtRFkOYZgpzXL_z2DG18dPyo8shrmjZz8l22PNIwXP80c_dfyw_jxRaHuNiaHm6FOevtJ_46o9r8VKV2-Ih2dT3j8XdJumUhTlpkHTuEE3uM_SYKUINBF6zMuTYaXZsDPqGkRuvwIHOgDRg63PImfRa3Px-e2beHcf-QOPXDq210hr9DTEHS8A
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS.2018.00076
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 1538642301
9781538642306
EISSN 2575-8454
EndPage 754
ExternalDocumentID 8555154
Genre orig-research
GroupedDBID --Z
29O
6IE
6IH
6IK
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-h250t-b8a3978849c68c862a830a0c3e24a7e73e7e448cbe8ebc2070360a308dc909ea3
IEDL.DBID RIE
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455014500067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:50:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h250t-b8a3978849c68c862a830a0c3e24a7e73e7e448cbe8ebc2070360a308dc909ea3
OpenAccessLink https://inria.hal.science/hal-03135932
PageCount 12
ParticipantIDs ieee_primary_8555154
PublicationCentury 2000
PublicationDate 2018-Oct
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct
PublicationDecade 2010
PublicationTitle 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS)
PublicationTitleAbbrev SFCS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0040504
ssj0002683733
Score 2.456572
Snippet We prove that quantum expander codes can be combined with quantum fault-tolerance techniques to achieve constant overhead: the ratio between the total number...
SourceID ieee
SourceType Publisher
StartPage 743
SubjectTerms Decoding
decoding algorithm
expander codes
Fault tolerance
Fault tolerant systems
Graph theory
Noise measurement
percolation
single-shot quantum error correction
Title Constant Overhead Quantum Fault-Tolerance with Quantum Expander Codes
URI https://ieeexplore.ieee.org/document/8555154
WOSCitedRecordID wos000455014500067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMshbaItzwwYurEiePMUSsGaIsoqFsVOxeBVJqqTRA_HzsJgYGFzY_FOj_uu_PddwDXPJEeF46iIg0E9VyV0NAPfWp5QVxlEIou6Zpe7oPJRC4W4awFN00uDCKWwWd4a5vlX36S6cK6yobSN_rd99rQDgJR5Wo1_hRXGFOLN6-wwSHMq6l8HBYOx9PoyQZy2chJZglGftVSKVXJuPu_RRzC4Ccnj8wabXMELVz3oPtdlIHUd7QHBw8NEeuuD6Oown85mZozax7ehDwWplu8k3FcrHI6z1Zoa2sgsR7ZZnL0uSnTXkiUJbgbwPN4NI_uaF05gb4aSJNTJWODM6T0Qi2kNkZLLDmLjdzR9eIAA44BGrtMK5SotGuvvWAxZzLRIQsx5sfQWWdrPAGCroFoqaO1tmSBvlJp6jI_5Sh0Kh2RnELfymi5qcgxlrV4zv4ePod9uwlVNNwFdPJtgZewpz_yt932qtzRL9leoDE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggQshRbEGw-MmDpx4jhz1KiIvhAFdasS5yKQSlu1CeLnY6chMLCwxckSnR_33fnu-wBueCIdLqyYitQT1LHjhPqu71LDC2LHGqGogq7ppecNBnIy8Uc1uK16YRCxKD7DO_NY3OUnC5WbVFlbutq_u84WbBvlrLJbq8qo2EIHW7w6hzUSYU5J5mMxvx0OgydTymVqJ5mhGPmlplI4k7Dxv984gKOfrjwyqvzNIdRw3oTGtywDKXdpE_b7FRXrugWdYIMAMzLUq1YfvQl5zPUwfydhlM8yOl7M0KhrIDE52epj53NZNL6QYJHg-giew8446NJSO4G-alCT0VhGGmlI6fhKSKXDlkhyFmnLo-1EHnocPdSRmYpRYqxss_EFiziTifKZjxE_hvp8MccTIGhrkJZaSilDF-jGcZrazE05CpVKSySn0DI2mi439BjT0jxnf7--ht3uuN-b9u4HD-ewZyZkUxt3AfVsleMl7KiP7G29uipm9wthrKN6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+59th+Annual+Symposium+on+Foundations+of+Computer+Science+%28FOCS%29&rft.atitle=Constant+Overhead+Quantum+Fault-Tolerance+with+Quantum+Expander+Codes&rft.au=Fawzi%2C+Omar&rft.au=Grospellier%2C+Antoine&rft.au=Leverrier%2C+Anthony&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=743&rft.epage=754&rft_id=info:doi/10.1109%2FFOCS.2018.00076&rft.externalDocID=8555154