Constant Overhead Quantum Fault-Tolerance with Quantum Expander Codes
We prove that quantum expander codes can be combined with quantum fault-tolerance techniques to achieve constant overhead: the ratio between the total number of physical qubits required for a quantum computation with faulty hardware and the number of logical qubits involved in the ideal computation...
Gespeichert in:
| Veröffentlicht in: | 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) S. 743 - 754 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.10.2018
|
| Schlagworte: | |
| ISSN: | 2575-8454 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We prove that quantum expander codes can be combined with quantum fault-tolerance techniques to achieve constant overhead: the ratio between the total number of physical qubits required for a quantum computation with faulty hardware and the number of logical qubits involved in the ideal computation is asymptotically constant, and can even be taken arbitrarily close to 1 in the limit o small physical error rate. This improves on the polylogarithmic overhead promised by the standard threshold theorem. To achieve this, we exploit a framework introduced by Gottesman together with a family of constant rate quantum codes, quantum expander codes. Our main technical contribution is to analyze an efficient decoding algorithm for these codes and prove that it remains robust in the presence of noisy syndrome measurements, a property which is crucial for fault-tolerant circuits. We also establish two additional features of the decoding algorithm that make it attractive for quantum computation: it can be parallelized to run in logarithmic depth, and is single-shot, meaning that it only requires a single round of noisy syndrome measurement. |
|---|---|
| AbstractList | We prove that quantum expander codes can be combined with quantum fault-tolerance techniques to achieve constant overhead: the ratio between the total number of physical qubits required for a quantum computation with faulty hardware and the number of logical qubits involved in the ideal computation is asymptotically constant, and can even be taken arbitrarily close to 1 in the limit o small physical error rate. This improves on the polylogarithmic overhead promised by the standard threshold theorem. To achieve this, we exploit a framework introduced by Gottesman together with a family of constant rate quantum codes, quantum expander codes. Our main technical contribution is to analyze an efficient decoding algorithm for these codes and prove that it remains robust in the presence of noisy syndrome measurements, a property which is crucial for fault-tolerant circuits. We also establish two additional features of the decoding algorithm that make it attractive for quantum computation: it can be parallelized to run in logarithmic depth, and is single-shot, meaning that it only requires a single round of noisy syndrome measurement. |
| Author | Leverrier, Anthony Fawzi, Omar Grospellier, Antoine |
| Author_xml | – sequence: 1 givenname: Omar surname: Fawzi fullname: Fawzi, Omar – sequence: 2 givenname: Antoine surname: Grospellier fullname: Grospellier, Antoine – sequence: 3 givenname: Anthony surname: Leverrier fullname: Leverrier, Anthony |
| BookMark | eNo9jMtKxEAQAEdRcLN69uAlP5DY88p0jhISFRaCuJ6XzqQlkd3JkoePv1dQPBVFQUXiLAyBhbiWkEoJ-W1VF8-pAokpALjsRETSasyM0iBPxUpZZxM01lyIaJreAAxYMCtRFkOYZgpzXL_z2DG18dPyo8shrmjZz8l22PNIwXP80c_dfyw_jxRaHuNiaHm6FOevtJ_46o9r8VKV2-Ih2dT3j8XdJumUhTlpkHTuEE3uM_SYKUINBF6zMuTYaXZsDPqGkRuvwIHOgDRg63PImfRa3Px-e2beHcf-QOPXDq210hr9DTEHS8A |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/FOCS.2018.00076 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISBN | 1538642301 9781538642306 |
| EISSN | 2575-8454 |
| EndPage | 754 |
| ExternalDocumentID | 8555154 |
| Genre | orig-research |
| GroupedDBID | --Z 29O 6IE 6IH 6IK ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-h250t-b8a3978849c68c862a830a0c3e24a7e73e7e448cbe8ebc2070360a308dc909ea3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455014500067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:50:51 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h250t-b8a3978849c68c862a830a0c3e24a7e73e7e448cbe8ebc2070360a308dc909ea3 |
| OpenAccessLink | https://inria.hal.science/hal-03135932 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_8555154 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Oct |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) |
| PublicationTitleAbbrev | SFCS |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0040504 ssj0002683733 |
| Score | 2.456572 |
| Snippet | We prove that quantum expander codes can be combined with quantum fault-tolerance techniques to achieve constant overhead: the ratio between the total number... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 743 |
| SubjectTerms | Decoding decoding algorithm expander codes Fault tolerance Fault tolerant systems Graph theory Noise measurement percolation single-shot quantum error correction |
| Title | Constant Overhead Quantum Fault-Tolerance with Quantum Expander Codes |
| URI | https://ieeexplore.ieee.org/document/8555154 |
| WOSCitedRecordID | wos000455014500067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMshbaItzwwYurEiePMUSsGaIsoqFsVOxeBVJqqTRA_HzsJgYGFzY_FOj_uu_PddwDXPJEeF46iIg0E9VyV0NAPfWp5QVxlEIou6Zpe7oPJRC4W4awFN00uDCKWwWd4a5vlX36S6cK6yobSN_rd99rQDgJR5Wo1_hRXGFOLN6-wwSHMq6l8HBYOx9PoyQZy2chJZglGftVSKVXJuPu_RRzC4Ccnj8wabXMELVz3oPtdlIHUd7QHBw8NEeuuD6Oown85mZozax7ehDwWplu8k3FcrHI6z1Zoa2sgsR7ZZnL0uSnTXkiUJbgbwPN4NI_uaF05gb4aSJNTJWODM6T0Qi2kNkZLLDmLjdzR9eIAA44BGrtMK5SotGuvvWAxZzLRIQsx5sfQWWdrPAGCroFoqaO1tmSBvlJp6jI_5Sh0Kh2RnELfymi5qcgxlrV4zv4ePod9uwlVNNwFdPJtgZewpz_yt932qtzRL9leoDE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggQshRbEGw-MmDpx4jhz1KiIvhAFdasS5yKQSlu1CeLnY6chMLCwxckSnR_33fnu-wBueCIdLqyYitQT1LHjhPqu71LDC2LHGqGogq7ppecNBnIy8Uc1uK16YRCxKD7DO_NY3OUnC5WbVFlbutq_u84WbBvlrLJbq8qo2EIHW7w6hzUSYU5J5mMxvx0OgydTymVqJ5mhGPmlplI4k7Dxv984gKOfrjwyqvzNIdRw3oTGtywDKXdpE_b7FRXrugWdYIMAMzLUq1YfvQl5zPUwfydhlM8yOl7M0KhrIDE52epj53NZNL6QYJHg-giew8446NJSO4G-alCT0VhGGmlI6fhKSKXDlkhyFmnLo-1EHnocPdSRmYpRYqxss_EFiziTifKZjxE_hvp8MccTIGhrkJZaSilDF-jGcZrazE05CpVKSySn0DI2mi439BjT0jxnf7--ht3uuN-b9u4HD-ewZyZkUxt3AfVsleMl7KiP7G29uipm9wthrKN6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+59th+Annual+Symposium+on+Foundations+of+Computer+Science+%28FOCS%29&rft.atitle=Constant+Overhead+Quantum+Fault-Tolerance+with+Quantum+Expander+Codes&rft.au=Fawzi%2C+Omar&rft.au=Grospellier%2C+Antoine&rft.au=Leverrier%2C+Anthony&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2575-8454&rft.spage=743&rft.epage=754&rft_id=info:doi/10.1109%2FFOCS.2018.00076&rft.externalDocID=8555154 |