Deformable GANs for Pose-Based Human Image Generation
In this paper we address the problem of generating person images conditioned on a given pose. Specifically, given an image of a person and a target pose, we synthesize a new image of that person in the novel pose. In order to deal with pixel-to-pixel misalignments caused by the pose differences, we...
Saved in:
| Published in: | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 3408 - 3416 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2018
|
| Subjects: | |
| ISSN: | 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper we address the problem of generating person images conditioned on a given pose. Specifically, given an image of a person and a target pose, we synthesize a new image of that person in the novel pose. In order to deal with pixel-to-pixel misalignments caused by the pose differences, we introduce deformable skip connections in the generator of our Generative Adversarial Network. Moreover, a nearest-neighbour loss is proposed instead of the common L1 and L2 losses in order to match the details of the generated image with the target image. We test our approach using photos of persons in different poses and we compare our method with previous work in this area showing state-of-the-art results in two benchmarks. Our method can be applied to the wider field of deformable object generation, provided that the pose of the articulated object can be extracted using a keypoint detector. |
|---|---|
| AbstractList | In this paper we address the problem of generating person images conditioned on a given pose. Specifically, given an image of a person and a target pose, we synthesize a new image of that person in the novel pose. In order to deal with pixel-to-pixel misalignments caused by the pose differences, we introduce deformable skip connections in the generator of our Generative Adversarial Network. Moreover, a nearest-neighbour loss is proposed instead of the common L1 and L2 losses in order to match the details of the generated image with the target image. We test our approach using photos of persons in different poses and we compare our method with previous work in this area showing state-of-the-art results in two benchmarks. Our method can be applied to the wider field of deformable object generation, provided that the pose of the articulated object can be extracted using a keypoint detector. |
| Author | Sebe, Nicu Sangineto, Enver Siarohin, Aliaksandr Lathuiliere, Stephane |
| Author_xml | – sequence: 1 givenname: Aliaksandr surname: Siarohin fullname: Siarohin, Aliaksandr – sequence: 2 givenname: Enver surname: Sangineto fullname: Sangineto, Enver – sequence: 3 givenname: Stephane surname: Lathuiliere fullname: Lathuiliere, Stephane – sequence: 4 givenname: Nicu surname: Sebe fullname: Sebe, Nicu |
| BookMark | eNotjktLw0AURkdRsNasXbjJH0i8MzfzWtZY20LRIuq2zONGI00imbrw3xvQ1cfhwOG7ZGf90BNj1xxKzsHe1m-751IANyUASnvCMqsNl2iUqgTYUzbjoLBQltsLlqX0CQBCGTSVnDF5T80wds4fKF8tHlM-Ub4bEhV3LlHM19-d6_NN594nTz2N7tgO_RU7b9whUfa_c_b6sHyp18X2abWpF9viQ0g4Fhi1r4xDbQOisdxLDFIH3ShuYiNFI6OW2rrgBVnPRZRVCF7Z6I2rBALO2c1ftyWi_dfYdm782Rupp-8afwF_9EZZ |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2018.00359 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781538664209 1538664208 |
| EISSN | 1063-6919 |
| EndPage | 3416 |
| ExternalDocumentID | 8578457 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-h250t-3d7b48a379c33891b53c57c7f618df52f5d7579acb2e9b12d54ccb69db8a42303 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 356 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457843603057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:52:15 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h250t-3d7b48a379c33891b53c57c7f618df52f5d7579acb2e9b12d54ccb69db8a42303 |
| OpenAccessLink | http://hdl.handle.net/11380/1264592 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_8578457 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jun |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002683845 ssj0003211698 |
| Score | 2.6194992 |
| Snippet | In this paper we address the problem of generating person images conditioned on a given pose. Specifically, given an image of a person and a target pose, we... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3408 |
| SubjectTerms | Computer architecture Decoding Gallium nitride Generators Strain Task analysis |
| Title | Deformable GANs for Pose-Based Human Image Generation |
| URI | https://ieeexplore.ieee.org/document/8578457 |
| WOSCitedRecordID | wos000457843603057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQNTgRbxlgdGQtM4ztkjFAosVYQAdav8uAgkaFHT8vuxk6gwsLD5LFmyPtt353sCnMeF_6EJjCNNiY1SyymSStiIO0riQnMnXd1sAicTOZ2qvAUXm1wYIqqCz-gyDCtfvlvYdTCVDaS_XqnANrQRsc7V2thTkkxy2XjIAs39zyZTsqnmM4zVYPSSP4ZYrhA8yUNt0l_tVCppMu7-bx870P9Jy2P5RuDsQovme9Bt9EjWvNKyB-KGKlXUvBO7u5qUzFMsX5QUXXuZ5VhluGcPH56VsLrsdDidPjyPb59G91HTHiF69XrLysOJJpWao7I8eBuN4FagxSIbSleIpBAOBSptTULKDBMnUmtNppyR2itRMd-HznwxpwNglGlZZNYDaHSK0mktHZKQTnlW7tceQi-gMPusK2DMGgCO_p4-hu0Acx1QdQKd1XJNp7Blv1Zv5fKsOrZve9aXVQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggRTgRbxxgMjoUkcx_bIq7SiRBEqqFvl2BeBBC1qWn4_dhIVBhY2nyVL1mf77nxPgHM_tz80xn1PYai9SFP0hGTaowZDP1fUCFM1m-BJIsZjmTbgYpULg4hl8BleumHpyzczvXSmsq6w1ytifA3WWRSFQZWttbKohLGgovaROZrav00sRV3PJ_Bl9-YlfXLRXC58krrqpL8aqpTypNf63062ofOTmEfSlcjZgQZOd6FVa5KkfqdFG9gtlspo9o7k_iopiKVIOivQu7ZSy5DSdE8GH5aZkKrwtDufDjz37kY3fa9ukOC9Ws1lYQHlWSQU5VJT52_MGNWMa57HgTA5C3NmOONS6SxEmQWhYZHWWSxNJpRVo3y6B83pbIr7QDBWIo-1BTBTERdGKWE4MmGkZeZ27QG0HQqTz6oGxqQG4PDv6TPY7I8eh5PhIHk4gi0HeRVedQzNxXyJJ7ChvxZvxfy0PMJvju-anA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Deformable+GANs+for+Pose-Based+Human+Image+Generation&rft.au=Siarohin%2C+Aliaksandr&rft.au=Sangineto%2C+Enver&rft.au=Lathuiliere%2C+Stephane&rft.au=Sebe%2C+Nicu&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3408&rft.epage=3416&rft_id=info:doi/10.1109%2FCVPR.2018.00359&rft.externalDocID=8578457 |