Computing Homological Information Based on Directed Graphs within Discrete Objects

N-dimensional discrete objects can be interpreted as cubical complexes which are suitable for the study of their homology groups in order to understand the original discrete object. The classic approach consists in computing the Normal Smith Form of some matrices associated to the cubical complex. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing S. 571 - 578
Hauptverfasser: Gonzalez-Lorenzo, Aldo, Bac, Alexandra, Mari, Jean-Luc, Real, Pedro
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.09.2014
Schlagworte:
ISBN:9781479984473, 1479984477
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract N-dimensional discrete objects can be interpreted as cubical complexes which are suitable for the study of their homology groups in order to understand the original discrete object. The classic approach consists in computing the Normal Smith Form of some matrices associated to the cubical complex. Further approaches deal mainly with a pre-processing of the matrices in order to reduce their size. In this paper we propose a new approach, initially based on Discrete Morse Theory, which computes some homological information (Betti numbers and representative cycles) without calculating the Normal Smith Form. It works on any dimension, and it can also be applied to any kind of regular cell complex.
AbstractList N-dimensional discrete objects can be interpreted as cubical complexes which are suitable for the study of their homology groups in order to understand the original discrete object. The classic approach consists in computing the Normal Smith Form of some matrices associated to the cubical complex. Further approaches deal mainly with a pre-processing of the matrices in order to reduce their size. In this paper we propose a new approach, initially based on Discrete Morse Theory, which computes some homological information (Betti numbers and representative cycles) without calculating the Normal Smith Form. It works on any dimension, and it can also be applied to any kind of regular cell complex.
Author Gonzalez-Lorenzo, Aldo
Real, Pedro
Mari, Jean-Luc
Bac, Alexandra
Author_xml – sequence: 1
  givenname: Aldo
  surname: Gonzalez-Lorenzo
  fullname: Gonzalez-Lorenzo, Aldo
  organization: Aix-Marseille Univ., Marseille, France
– sequence: 2
  givenname: Alexandra
  surname: Bac
  fullname: Bac, Alexandra
  organization: Aix-Marseille Univ., Marseille, France
– sequence: 3
  givenname: Jean-Luc
  surname: Mari
  fullname: Mari, Jean-Luc
  organization: Aix-Marseille Univ., Marseille, France
– sequence: 4
  givenname: Pedro
  surname: Real
  fullname: Real, Pedro
  organization: Inst. of Math. IMUS, Univ. of Seville, Seville, Spain
BookMark eNpVjz1PwzAYhI0ACShZWVjyBxL8FTseSyhtpYpKFAamyklfN0ZJHNlGiH9PECxMd_ecdNJdobPBDYDQDcE5IVjd7d6e5rsqp5jwvKQnKFGyJFwqVXJe4tN_WbILlIRga0yFFJxRcYmeK9ePH9EOx3Tlete5o210l64H43yvo3VDeq8DHNLJPFgPTZz80uuxDemnja39waHxECHd1u9TH67RudFdgORPZ-j1cfFSrbLNdrmu5puspVzFDAhoXBswjNYSU06waTAmWhUgmDSkIIZpo3hZKNYY4KokYoJKSyNqdgA2Q7e_uxYA9qO3vfZfe4nZdJSyb9GvU1Q
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SYNASC.2014.82
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479984480
1479984485
EndPage 578
ExternalDocumentID 7034732
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-h249t-e1ea0bfef32b702410fc001a95e637f151f3af948593cfe498161519a7f6b3de3
IEDL.DBID RIE
ISBN 9781479984473
1479984477
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366596600075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jun 26 19:20:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h249t-e1ea0bfef32b702410fc001a95e637f151f3af948593cfe498161519a7f6b3de3
OpenAccessLink https://hal.science/hal-01381797
PageCount 8
ParticipantIDs ieee_primary_7034732
PublicationCentury 2000
PublicationDate 2014-Sept.
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-Sept.
PublicationDecade 2010
PublicationTitle 2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
PublicationTitleAbbrev SYNASC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764326
Score 1.5777906
Snippet N-dimensional discrete objects can be interpreted as cubical complexes which are suitable for the study of their homology groups in order to understand the...
SourceID ieee
SourceType Publisher
StartPage 571
SubjectTerms arbitrary dimension
computational topology
Context
cubical complexes
Discrete Morse Theory
discrete objects
Equations
Face
graphs
homology
Large scale integration
Scientific computing
simplicial complexes
Three-dimensional displays
Vectors
Title Computing Homological Information Based on Directed Graphs within Discrete Objects
URI https://ieeexplore.ieee.org/document/7034732
WOSCitedRecordID wos000366596600075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxcAEqEW85YGRtHHs5OIRKkqnUlGQylTZzll0oEV98Ps5J2m7sLCdTxmis3Wf73z3HWN3wugig6KgsMRTgJJZHenUmUh5n1N0gNZgNWwChsN8MtGjBrvf9cIgYll8hp0glm_5xcJtQqqsS6dTgSSHewCQVb1a27OTZEDYmmRl7xZQDKEUwJbSqV7LmrRRxLo7_hg-jHuhtEt1ShK-_WiVEln6x__7pxPW3rfo8dEOfE5ZA-ct9lrNaCAFHyy-tm6N1y1HYQv4I6FWwUmofB3Jz4GyesVDQnYW1ORH6CLNX2zI0Kza7L3_9NYbRPXQhOiTIql1hAJNbD16mVggABaxdwRFRqeYSfAE8F4aHzhhtHQelc7DnU9oAz6zskB5xprzxRzPGYfUpkbZVMf0vU9U7oVNHBQeUuVAigvWCvaYfle8GNPaFJd_q6_YUbB2VZ91zZrr5QZv2KH7Wc9Wy9tyM38Bak-dqw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI2mgQQnQBvimxw40q1tkqY5wsQYYpSJDWmcpqR1xA5saN34_Thtt124cHOsHion8osd-5mQm0CrLJJZhmGJxQAlMspTItUetzbG6ACMhnLYhEySeDxWgxq53fTCAEBRfAYtJxZv-dk8XblUWRtPJ5cMHe6O4Dz0y26t9ekJI4noGkZF95bEKIJzKdekTtWaVbSNga_aw4_kbthxxV28VdDwbYerFNjSPfjfXx2S5rZJjw428HNEajBrkLdySgMqaG_-tXZstGo6cptA7xG3MopC6e1QfnSk1Tl1KdmpU6Mnwas0fTUuR5M3yXv3YdTpedXYBO8TY6mlBwFo31iwLDQSITjwbYpgpJWAiEmLEG-Zto4VRrHUAlexu_UFSksbGZYBOyb12XwGJ4RKYYTmRigfv7chj21gwlRmVgqeShackoazx-S7ZMaYVKY4-1t9TfZ6o5f-pP-UPJ-TfWf5slrrgtSXixVckt30ZznNF1fFxv4C0Sag8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+16th+International+Symposium+on+Symbolic+and+Numeric+Algorithms+for+Scientific+Computing&rft.atitle=Computing+Homological+Information+Based+on+Directed+Graphs+within+Discrete+Objects&rft.au=Gonzalez-Lorenzo%2C+Aldo&rft.au=Bac%2C+Alexandra&rft.au=Mari%2C+Jean-Luc&rft.au=Real%2C+Pedro&rft.date=2014-09-01&rft.pub=IEEE&rft.isbn=9781479984473&rft.spage=571&rft.epage=578&rft_id=info:doi/10.1109%2FSYNASC.2014.82&rft.externalDocID=7034732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479984473/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479984473/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479984473/sc.gif&client=summon&freeimage=true