Extending Standard MapReduce Algorithms
The information rate nowadays is expanding very quickly and contains complex and heterogeneous data types (text, images, videos, GPS data, purchase transactions) that require powerful computing engines, able to easily store and process such complex structures. Gartner's definition of the 3Vs (v...
Uloženo v:
| Vydáno v: | 2016 IEEE Second International Conference on Multimedia Big Data (BigMM) s. 159 - 165 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.04.2016
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The information rate nowadays is expanding very quickly and contains complex and heterogeneous data types (text, images, videos, GPS data, purchase transactions) that require powerful computing engines, able to easily store and process such complex structures. Gartner's definition of the 3Vs (volume, velocity, variety) describing this expansion of data will then lead to extract the unnamed forth V (value) from BigData. This added value addresses the need for valuation of enterprise data. In this paper, we discuss the existing MapReduce implementation techniques and the need of a different approach based on the pre-processing of the data. The goal is to show interesting results in terms of data processing costs, performance and green computing. |
|---|---|
| DOI: | 10.1109/BigMM.2016.49 |