Online Human Intention Detection through Machine-learning based Algorithm for the Control of Lower-limbs Wearable Robot

Online human intention detection is one of the main challenges to ensure smooth human robot interaction for assistive robotics through wearable devices. This paper proposes a framework that combines both machine learning based algorithms and task-oriented control of an actuated-ankle-foot orthosis f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE-RAS International Conference on Humanoid Robots (Print) s. 809 - 814
Hlavní autoři: Moon, Huiseok, Boubezoul, Abderrahmane, Oukhellou, Latifa, Amirat, Yacine, Mohammed, Samer
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 28.11.2022
Témata:
ISSN:2164-0580
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Online human intention detection is one of the main challenges to ensure smooth human robot interaction for assistive robotics through wearable devices. This paper proposes a framework that combines both machine learning based algorithms and task-oriented control of an actuated-ankle-foot orthosis for human locomotion assistance during five gait modes that are level walking, stairs ascent/descent, and ramp ascent/descent. A random-forest based algorithm has been trained to provide an online classification of the five gait modes using kinematic features of a dataset collected with ten healthy subjects. Finally, appropriate assistive torques were applied at the ankle joint level with respect to the detected gait mode. The proposed scheme is verified in terms of gait mode detection success rate and the torque assistance through the actuated-ankle-foot orthosis at the ankle joint level. One healthy subject participated in the experiments with and without applying the torque assistance strategy. The results show the following average success rates of 99.49%, 98.30%, 96.07%, 84.63%, and 85.55% for the different locomotion modes, that are level walking, stair ascent, stair descent, ramp ascent, and ramp descent, respectively.
AbstractList Online human intention detection is one of the main challenges to ensure smooth human robot interaction for assistive robotics through wearable devices. This paper proposes a framework that combines both machine learning based algorithms and task-oriented control of an actuated-ankle-foot orthosis for human locomotion assistance during five gait modes that are level walking, stairs ascent/descent, and ramp ascent/descent. A random-forest based algorithm has been trained to provide an online classification of the five gait modes using kinematic features of a dataset collected with ten healthy subjects. Finally, appropriate assistive torques were applied at the ankle joint level with respect to the detected gait mode. The proposed scheme is verified in terms of gait mode detection success rate and the torque assistance through the actuated-ankle-foot orthosis at the ankle joint level. One healthy subject participated in the experiments with and without applying the torque assistance strategy. The results show the following average success rates of 99.49%, 98.30%, 96.07%, 84.63%, and 85.55% for the different locomotion modes, that are level walking, stair ascent, stair descent, ramp ascent, and ramp descent, respectively.
Author Moon, Huiseok
Oukhellou, Latifa
Mohammed, Samer
Amirat, Yacine
Boubezoul, Abderrahmane
Author_xml – sequence: 1
  givenname: Huiseok
  surname: Moon
  fullname: Moon, Huiseok
  email: huiseok.moon@u-pec.fr
  organization: University of Pais-Est Créteil (UPEC),Laboratory of Images, Signals and Intelligent Systems (LISSI),Vitry-sur-Seine,France,94400
– sequence: 2
  givenname: Abderrahmane
  surname: Boubezoul
  fullname: Boubezoul, Abderrahmane
  organization: Université Gustave Eiffel,COSYS-GRETTIA,Marne-la-Vallée,France
– sequence: 3
  givenname: Latifa
  surname: Oukhellou
  fullname: Oukhellou, Latifa
  organization: Université Gustave Eiffel,COSYS-GRETTIA,Marne-la-Vallée,France
– sequence: 4
  givenname: Yacine
  surname: Amirat
  fullname: Amirat, Yacine
  organization: University of Pais-Est Créteil (UPEC),Laboratory of Images, Signals and Intelligent Systems (LISSI),Vitry-sur-Seine,France,94400
– sequence: 5
  givenname: Samer
  surname: Mohammed
  fullname: Mohammed, Samer
  email: samer.mohammed@u-pec.fr
  organization: University of Pais-Est Créteil (UPEC),Laboratory of Images, Signals and Intelligent Systems (LISSI),Vitry-sur-Seine,France,94400
BookMark eNo1kMFOwzAQRA0CiVL6Bxx84JqydurEPlaF0kpFlRCIY-Uk68YosZHjquLvMQX2MqPdN3PYa3LhvENC7hhMGQN1vzr02nnbDCJXSkw5cD5lkIYJOCMTVSqZC8ghGXVORpwVswyEhCsyGYaPxOVMSsWLETluXWcd0lMjXbuILlrv6ANGrE8utsEf9i191nWbyKxDHZx1e1rpARs67_Y-2Nj21PiQYKQL72LwHfWGbvwRQ9bZvhroe8rpqkP64isfb8il0d2Akz8dk7fl4-tilW22T-vFfJO1PJcxU2amSzAGDMgCazCzuhDCNI0Uukg3FGWtNJQlK7isK1ULqHjzs1BaC93kY3L722sRcfcZbK_D1-7_V_k3JK5kpQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/Humanoids53995.2022.10000150
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350309799
EISSN 2164-0580
EndPage 814
ExternalDocumentID 10000150
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-h238t-9f4a70ff0f086ec0f4c655fdd85a6f4ae57c9a0771628cb9c50b2da0779aa5ad3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000925894300107&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:14:14 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h238t-9f4a70ff0f086ec0f4c655fdd85a6f4ae57c9a0771628cb9c50b2da0779aa5ad3
PageCount 6
ParticipantIDs ieee_primary_10000150
PublicationCentury 2000
PublicationDate 2022-Nov.-28
PublicationDateYYYYMMDD 2022-11-28
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-28
  day: 28
PublicationDecade 2020
PublicationTitle IEEE-RAS International Conference on Humanoid Robots (Print)
PublicationTitleAbbrev HUMANOIDS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188926
Score 1.8293598
Snippet Online human intention detection is one of the main challenges to ensure smooth human robot interaction for assistive robotics through wearable devices. This...
SourceID ieee
SourceType Publisher
StartPage 809
SubjectTerms Humanoid robots
Kinematics
Legged locomotion
Machine learning algorithms
Torque
Wearable computers
Wearable robots
Title Online Human Intention Detection through Machine-learning based Algorithm for the Control of Lower-limbs Wearable Robot
URI https://ieeexplore.ieee.org/document/10000150
WOSCitedRecordID wos000925894300107&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagQggWXkW85aGrW5P6EY-ogBigqhCIbpWfbaQ2QW0Kfx_bSQsMDGyRY0fWnaXzXe77PgBaghDFlFXI2WuDSFcZJAlTCCvqHE-lD7mV2ATv99PhUAxqsHrEwlhrY_OZbYfH-C_fFHoZSmWdqhYdMvRNzlkF1loXVPzhTEXCtkGr5tHsxDJ4kZlFYF-lPhdMkvbqE7_EVGIsud_75y72QfMblQcH63hzADZsfgh2fxAKHoHPijkUxj3B2J4eDA9vbRlbrnJY6_LAp9hEaVGtGjGGIZwZeDMdF_OsnMygv8z6yRb2ql52WDj4GBTV0DSbqQV88-sC6go-F6oom-D1_u6l94BqaQU08TG6RMIRybFz2PmUxmrsiGaUOmNSKpl_ZynXQmIe-KVSrYSmWCUmDAgpqTTdY9DIi9yeAGg0Syz3DsbCEuyzPSwMk36qIUobgk9BM9hw9F6xZ4xW5jv7Y_wc7ARPBbxfkl6ARjlf2kuwpT_KbDG_ij7_AtZvsBc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MGh8XXxjf9sC1UJd2d3s0KNEIhBiM3EifsAnsGlj079t2F9SDB2-bbrtpZppMZ3a-7wOgxggRodACGX2rEGkKhTgJBcKCGhPF3IbcQmwi6vXi4ZD1S7C6x8JorX3zma67R_8vX2Vy6UpljaIW7TL0TUps4lPAtdYlFXs8YxaE26BWMmk2fCE8S9TC8a9Smw0GQX31kV9yKj6atPf_uY8DUP3G5cH-OuIcgg2dHoG9H5SCx-Cz4A6Ffk_QN6g708N7nfumqxSWyjyw69soNSp1I8bQBTQF76bjbJ7kkxm011k7WcNW0c0OMwM7TlMNTZOZWMA3u87hruBLJrK8Cl7bD4PWIyrFFdDERukcMUN4hI3BxiY1WmJDZEipUSqmPLTvNI0k4zhyDFOxFExSLALlBhjnlKvmCaikWapPAVQyDHRkXYyZJtjme5ipkNupigipCD4DVWfD0XvBnzFame_8j_EbsPM46HZGnafe8wXYdV5z6L8gvgSVfL7UV2BLfuTJYn7t_f8FKQezXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE-RAS+International+Conference+on+Humanoid+Robots+%28Print%29&rft.atitle=Online+Human+Intention+Detection+through+Machine-learning+based+Algorithm+for+the+Control+of+Lower-limbs+Wearable+Robot&rft.au=Moon%2C+Huiseok&rft.au=Boubezoul%2C+Abderrahmane&rft.au=Oukhellou%2C+Latifa&rft.au=Amirat%2C+Yacine&rft.date=2022-11-28&rft.pub=IEEE&rft.eissn=2164-0580&rft.spage=809&rft.epage=814&rft_id=info:doi/10.1109%2FHumanoids53995.2022.10000150&rft.externalDocID=10000150