Leveraging Vector-Quantized Variational Autoencoder Inner Metrics for Anomaly Detection
Anomaly Detection (AD) is an important research topic, with very diverse applications such as industrial defect detection, medical diagnosis, fraud detection, intrusion detection, etc. Within the last few years, deep learning-based methods have become the standard approach for AD. In many practical...
Saved in:
| Published in: | International Conference on Pattern Recognition pp. 435 - 441 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
21.08.2022
|
| Subjects: | |
| ISSN: | 2831-7475 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Anomaly Detection (AD) is an important research topic, with very diverse applications such as industrial defect detection, medical diagnosis, fraud detection, intrusion detection, etc. Within the last few years, deep learning-based methods have become the standard approach for AD. In many practical cases, the anomalies are unknown in advance. Therefore, most of challenging AD problems need to be addressed in an unsupervised or weakly supervised framework. In this context, deep generative models are widely used, in particular Variational Autoencoder (VAE) models. VAEs have been extended to Vector-Quantized VAEs (VQ-VAEs), a model increasingly popular because of its versatility enabled by the discrete latent space. We present for the first time a robust approach which takes advantage of the inner metrics of VQ-VAEs for AD. We show that the distance between the output of the encoder and the codebook vectors of a VQ-VAE provides a valuable information which can be used to localize the anomalies. In our approach, this metric complements a reconstruction-based metric to improve AD results. We compare our model with state-of-the-art AD models on three standards datasets, including the MVTec, UCSD-Ped1 and CIFAR-10 datasets. Experiments show that the proposed method yields high competitive results. |
|---|---|
| AbstractList | Anomaly Detection (AD) is an important research topic, with very diverse applications such as industrial defect detection, medical diagnosis, fraud detection, intrusion detection, etc. Within the last few years, deep learning-based methods have become the standard approach for AD. In many practical cases, the anomalies are unknown in advance. Therefore, most of challenging AD problems need to be addressed in an unsupervised or weakly supervised framework. In this context, deep generative models are widely used, in particular Variational Autoencoder (VAE) models. VAEs have been extended to Vector-Quantized VAEs (VQ-VAEs), a model increasingly popular because of its versatility enabled by the discrete latent space. We present for the first time a robust approach which takes advantage of the inner metrics of VQ-VAEs for AD. We show that the distance between the output of the encoder and the codebook vectors of a VQ-VAE provides a valuable information which can be used to localize the anomalies. In our approach, this metric complements a reconstruction-based metric to improve AD results. We compare our model with state-of-the-art AD models on three standards datasets, including the MVTec, UCSD-Ped1 and CIFAR-10 datasets. Experiments show that the proposed method yields high competitive results. |
| Author | Gangloff, Hugo Pham, Minh-Tan Courtrai, Luc Lefevre, Sebastien |
| Author_xml | – sequence: 1 givenname: Hugo surname: Gangloff fullname: Gangloff, Hugo email: hugo.gangloff@irisa.fr organization: Université Bretagne Sud,IRISA,Vannes,France,56000 – sequence: 2 givenname: Minh-Tan surname: Pham fullname: Pham, Minh-Tan email: minh-tan.pham@irisa.fr organization: Université Bretagne Sud,IRISA,Vannes,France,56000 – sequence: 3 givenname: Luc surname: Courtrai fullname: Courtrai, Luc email: luc.courtrai@irisa.fr organization: Université Bretagne Sud,IRISA,Vannes,France,56000 – sequence: 4 givenname: Sebastien surname: Lefevre fullname: Lefevre, Sebastien email: sebastien.lefevre@irisa.fr organization: Université Bretagne Sud,IRISA,Vannes,France,56000 |
| BookMark | eNotkMtKAzEYRqMo2FafQJC8wNTcJpksh_FWqHhB67Jkkj810iaSSYX69Bbs5jurcxbfGJ3EFAGhK0qmlBJ9PeueX2vJJZ0ywthU61pSwo7QmEpZC00kE8doxBpOKyVUfYbGw_BFCCO8bkboYw4_kM0qxBVegC0pVy9bE0v4BYcXJgdTQopmjdttSRBtcpDxLMb9PkLJwQ7Yp4zbmDZmvcM3UPaRvXGOTr1ZD3Bx4AS9392-dQ_V_Ol-1rXz6pNxVSrvSWN7XStvRW-ds7KXXrhGCcKNNrZX3mneK-sMsdZRp5peN2C9oMYoQfkEXf53AwAsv3PYmLxbHk7gf13vVm8 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICPR56361.2022.9956102 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISBN | 1665490624 9781665490627 |
| EISSN | 2831-7475 |
| EndPage | 441 |
| ExternalDocumentID | 9956102 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Maritime and Fisheries Fund funderid: 10.13039/100014510 |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-h237t-ff08cb957fc4bcddc6b6f4d87403a9acb7fd93b7cda0ccd1d78b98ecf41aa7413 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000897707600060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:18:27 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h237t-ff08cb957fc4bcddc6b6f4d87403a9acb7fd93b7cda0ccd1d78b98ecf41aa7413 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_9956102 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Aug.-21 |
| PublicationDateYYYYMMDD | 2022-08-21 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-Aug.-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Pattern Recognition |
| PublicationTitleAbbrev | ICPR |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020358 |
| Score | 2.3029745 |
| Snippet | Anomaly Detection (AD) is an important research topic, with very diverse applications such as industrial defect detection, medical diagnosis, fraud detection,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 435 |
| SubjectTerms | Intrusion detection Learning systems Machine learning Measurement Medical diagnosis Pattern recognition Training |
| Title | Leveraging Vector-Quantized Variational Autoencoder Inner Metrics for Anomaly Detection |
| URI | https://ieeexplore.ieee.org/document/9956102 |
| WOSCitedRecordID | wos000897707600060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNBLta34JgePbptNdrObY6kWhVqqaO2t5IkF3ZV2V9Bfb5KuVcGLtySQBGbymJnkmw-AM65wJHhMAokUDSKsRZBiLgKDCCZM2rong5kMk9EonU7ZuAbO11gYrbX_fKY7rujf8lUuSxcq63oUpsscuZEkdIXVWjtXiMRphQAOEete98d3MSXUuYAYd6qevyhU_A0yaPxv7h3Q_obiwfH6ktkFNZ01QeOLiwFWW7MJtn8kFmyBx6G2S9QTEMGJj8sHt6WV4fxDKzix7nEVAoS9sshdKktlx7p2LFzwxlFsySW0xizsZfkLf36HF7rwP7ayNngYXN73r4KKQiF4wiQpAmNQKgWLEyMjIZWSVFATKcfDRzjjUiRGMSISqTiSUoUqSQVLtTRRyLk1NsgeqGd5pvcBpDTlzNoXQlsbC1HOIiW5MtQeCYgKgg5Ay0lt9rrKkjGrBHb4d_MR2HKKcdFZHB6DerEo9QnYlG_FfLk49ar9BHb7p-w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6ImqgXFDC-7cGjC912t7s9EpRAXAgaRG6kr40kuhhYTPTX25YVNfHirW3SNpnpY2babz4ALrnCgeAh8SRS1AuwFl6MufBSRDBh0tQdGcwoifr9eDxmgxK4WmNhtNbu85mu26J7y1czubShsoZDYdrMkZthEGC0Qmut3StEwrjAAPuINbqtwX1ICbVOIMb1ou8vEhV3h7TL_5t9D9S-wXhwsL5m9kFJZxVQ_mJjgMXmrIDdH6kFq-Ax0WaROgoiOHKRee9uaaQ4_dAKjoyDXAQBYXOZz2wyS2XG6loeLtizJFtyAY05C5vZ7IU_v8Nrnbs_W1kNPLRvhq2OV5AoeE-YRLmXpiiWgoVRKgMhlZJU0DRQlomPcMaliFLFiIik4khK5asoFizWMg18zo25QQ7ARjbL9CGAlMacGQtDaGNlIcpZoCRXKTWHAqKCoCNQtVKbvK7yZEwKgR3_3XwBtjvDXjJJuv3bE7BjlWRjtdg_BRv5fKnPwJZ8y6eL-blT8yddt6sz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Pattern+Recognition&rft.atitle=Leveraging+Vector-Quantized+Variational+Autoencoder+Inner+Metrics+for+Anomaly+Detection&rft.au=Gangloff%2C+Hugo&rft.au=Pham%2C+Minh-Tan&rft.au=Courtrai%2C+Luc&rft.au=Lefevre%2C+Sebastien&rft.date=2022-08-21&rft.pub=IEEE&rft.eissn=2831-7475&rft.spage=435&rft.epage=441&rft_id=info:doi/10.1109%2FICPR56361.2022.9956102&rft.externalDocID=9956102 |