Gangloff, H., Pham, M., Courtrai, L., & Lefevre, S. (2022, August 21). Leveraging Vector-Quantized Variational Autoencoder Inner Metrics for Anomaly Detection. International Conference on Pattern Recognition, 435-441. https://doi.org/10.1109/ICPR56361.2022.9956102
Chicago Style (17th ed.) CitationGangloff, Hugo, Minh-Tan Pham, Luc Courtrai, and Sebastien Lefevre. "Leveraging Vector-Quantized Variational Autoencoder Inner Metrics for Anomaly Detection." International Conference on Pattern Recognition 21 Aug. 2022: 435-441. https://doi.org/10.1109/ICPR56361.2022.9956102.
MLA (9th ed.) CitationGangloff, Hugo, et al. "Leveraging Vector-Quantized Variational Autoencoder Inner Metrics for Anomaly Detection." International Conference on Pattern Recognition, 21 Aug. 2022, pp. 435-441, https://doi.org/10.1109/ICPR56361.2022.9956102.