Unsupervised Network Intrusion Detection System for AVTP in Automotive Ethernet Networks
Network Intrusion Detection Systems (NIDSs) are widely regarded as efficient tools for securing in-vehicle networks against diverse cyberattacks. However, since cyberattacks are always evolving, signature-based intrusion detection systems are no longer adopted. An alternative solution can be the dep...
Saved in:
| Published in: | 2022 IEEE Intelligent Vehicles Symposium (IV) pp. 1731 - 1738 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
05.06.2022
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Network Intrusion Detection Systems (NIDSs) are widely regarded as efficient tools for securing in-vehicle networks against diverse cyberattacks. However, since cyberattacks are always evolving, signature-based intrusion detection systems are no longer adopted. An alternative solution can be the deployment of deep learning based intrusion detection system which play an important role in detecting unknown attack patterns in network traffic. Hence, in this paper, we compare the performance of different unsupervised deep and machine learning based anomaly detection algorithms, for real-time detection of anomalies on the Audio Video Transport Protocol (AVTP), an application layer protocol implemented in the recent Automotive Ethernet based in-vehicle network. The numerical results, conducted on the recently published "Automotive Ethernet Intrusion Dataset show that deep learning models significantly outperfom other state-of-the art traditional anomaly detection models in machine learning under different experimental settings. |
|---|---|
| AbstractList | Network Intrusion Detection Systems (NIDSs) are widely regarded as efficient tools for securing in-vehicle networks against diverse cyberattacks. However, since cyberattacks are always evolving, signature-based intrusion detection systems are no longer adopted. An alternative solution can be the deployment of deep learning based intrusion detection system which play an important role in detecting unknown attack patterns in network traffic. Hence, in this paper, we compare the performance of different unsupervised deep and machine learning based anomaly detection algorithms, for real-time detection of anomalies on the Audio Video Transport Protocol (AVTP), an application layer protocol implemented in the recent Automotive Ethernet based in-vehicle network. The numerical results, conducted on the recently published "Automotive Ethernet Intrusion Dataset show that deep learning models significantly outperfom other state-of-the art traditional anomaly detection models in machine learning under different experimental settings. |
| Author | Ghauch, Hadi Alkhatib, Natasha Danger, Jean-Luc Mushtaq, Maria |
| Author_xml | – sequence: 1 givenname: Natasha surname: Alkhatib fullname: Alkhatib, Natasha email: natasha.alkhatib@telecom-paris.fr organization: Télécom Paris, IP Paris,Palaiseau,France – sequence: 2 givenname: Maria surname: Mushtaq fullname: Mushtaq, Maria email: maria.mushtaq@telecom-paris.fr organization: Télécom Paris, IP Paris,Palaiseau,France – sequence: 3 givenname: Hadi surname: Ghauch fullname: Ghauch, Hadi email: hadi.ghauch@telecom-paris.fr organization: Télécom Paris, IP Paris,Palaiseau,France – sequence: 4 givenname: Jean-Luc surname: Danger fullname: Danger, Jean-Luc email: jean-luc.danger@telecom-paris.fr organization: Télécom Paris, IP Paris,Palaiseau,France |
| BookMark | eNo1j09LwzAcQCPowU0_gR7yBVrzp0nTY5nTFYYKbsPbSLpfWNAmI0kn-_YiztN7pwdvgi598IDQPSUlpaR56DaCNjUtGWGsbBSrmRIXaEKlFJVSjLJr9LH2aTxAPLoEO_wC-TvET9z5HMfkgsePkKHPv_Z-ShkGbEPE7Wb1hp3H7ZjDELI7Ap7nPUQP-T-RbtCV1V8Jbs-covXTfDVbFMvX527WLos943UugEtpxK4XRtmKga0U0VQ3RhnSaCNBEiWpkarXghiQfa2B1wS0Fdb2zFg-RXd_XQcA20N0g46n7XmW_wC_sVEp |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IV51971.2022.9827285 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665488212 9781665488211 |
| EndPage | 1738 |
| ExternalDocumentID | 9827285 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-h237t-e366b5dc5b8f42ef480a1a9b8b09ab6e60861b68ca50be6c7ae370eaf5ffc2bf3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000854106700245&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jun 29 18:36:49 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h237t-e366b5dc5b8f42ef480a1a9b8b09ab6e60861b68ca50be6c7ae370eaf5ffc2bf3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_9827285 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-June-5 |
| PublicationDateYYYYMMDD | 2022-06-05 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-June-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE Intelligent Vehicles Symposium (IV) |
| PublicationTitleAbbrev | IV |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.3325396 |
| Snippet | Network Intrusion Detection Systems (NIDSs) are widely regarded as efficient tools for securing in-vehicle networks against diverse cyberattacks. However,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1731 |
| SubjectTerms | Anomaly Detection Automotive Ethernet AVTP Deep learning Ethernet In-Vehicle Network Network intrusion detection Neural Network Numerical models Real-time systems Telecommunication traffic Transport protocols |
| Title | Unsupervised Network Intrusion Detection System for AVTP in Automotive Ethernet Networks |
| URI | https://ieeexplore.ieee.org/document/9827285 |
| WOSCitedRecordID | wos000854106700245&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb8IgFCZqdthpW3TZ73DYcVUKhcLRbJp5MR7UeDOlPDIvaNbWv3-Fdi5LdtmNAIHkeyHvPfg-HkLPTIFgiTSRpUpEiZAq0hx4xIEZmXEOMZBQbCKdz-VmoxYd9HLSwgBAIJ_B0DfDW77Z55W_KhspSVMqeRd101Q0Wq1WDRcTNZqtvQjT53yUDtupv2qmBJcxvfjfZpdo8KO9w4uTV7lCHXB9tFm5ojr4Y12AwfOGuo1nzismamDxG5SBUuVw8wM5rkNRPF4vF3jn8LgqA-XuCHjiwz0H5fcSxQCtppPl63vU1kSIPihLywiYEJqbnGtpEwo2kSSLM6WlJirTAkSdosRaSF_pQIPI0wxYSiCz3NqcasuuUc_tHdwgLARhhhJO69FEGJBaWJKDiZWpLUXELep7VLaH5tuLbQvI3d_d9-jcAx9YVPwB9WoA4BGd5cdyV3w-BVt9AbedmdM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSkBoy_7cGjg65du_ZIFAIRCQcg3Mi6vkYvg7jB3-_aTYyJF29N27TJ99K81_b73kPokSkQLJImsFSJIBJSBZoDDzgwIxPOIQTii03Ek4lcLtW0gZ72WhgA8OQz6Lim_8s363Trnsq6StKYSn6ADnkUUVKptWo9XEhUd7RwMkx366O0U0_-VTXFO43B6f-2O0PtH_Udnu79yjlqQNZCy3mWbzfuYOdg8KQib-NR5jQTJbT4BQpPqspwlYMcl8Eo7i1mU_yR4d628KS7HeC-C_gyKL6XyNtoPujPnodBXRUheKcsLgJgQmhuUq6ljSjYSJIkTJSWmqhECxDlJSXUQrpaBxpEGifAYgKJ5damVFt2gZrZOoNLhIUgzFDCaTkaCQNSC0tSMKEypa2IuEIth8pqUyW-WNWAXP_d_YCOh7O38Wo8mrzeoBNnBM-p4reoWYIBd-go3RUf-ee9t9sX4w2dGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Intelligent+Vehicles+Symposium+%28IV%29&rft.atitle=Unsupervised+Network+Intrusion+Detection+System+for+AVTP+in+Automotive+Ethernet+Networks&rft.au=Alkhatib%2C+Natasha&rft.au=Mushtaq%2C+Maria&rft.au=Ghauch%2C+Hadi&rft.au=Danger%2C+Jean-Luc&rft.date=2022-06-05&rft.pub=IEEE&rft.spage=1731&rft.epage=1738&rft_id=info:doi/10.1109%2FIV51971.2022.9827285&rft.externalDocID=9827285 |