CAESR: Conditional Autoencoder and Super-Resolution for Learned Spatial Scalability
In this paper, we present CAESR, an hybrid learning-based coding approach for spatial scalability based on the versatile video coding (VVC) standard. Our framework considers a low-resolution signal encoded with VVC intra-mode as a base-layer (BL), and a deep conditional autoencoder with hyperprior (...
Gespeichert in:
| Veröffentlicht in: | Visual communications and image processing (Online) S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
05.12.2021
|
| Schlagworte: | |
| ISSN: | 2642-9357 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we present CAESR, an hybrid learning-based coding approach for spatial scalability based on the versatile video coding (VVC) standard. Our framework considers a low-resolution signal encoded with VVC intra-mode as a base-layer (BL), and a deep conditional autoencoder with hyperprior (AE-HP) as an enhancement-layer (EL) model. The EL encoder takes as inputs both the upscaled BL reconstruction and the original image. Our approach relies on conditional coding that learns the optimal mixture of the source and the upscaled BL image, enabling better performance than residual coding. On the decoder side, a super-resolution (SR) module is used to recover high-resolution details and invert the conditional coding process. Experimental results have shown that our solution is competitive with the VVC full-resolution intra coding while being scalable. |
|---|---|
| AbstractList | In this paper, we present CAESR, an hybrid learning-based coding approach for spatial scalability based on the versatile video coding (VVC) standard. Our framework considers a low-resolution signal encoded with VVC intra-mode as a base-layer (BL), and a deep conditional autoencoder with hyperprior (AE-HP) as an enhancement-layer (EL) model. The EL encoder takes as inputs both the upscaled BL reconstruction and the original image. Our approach relies on conditional coding that learns the optimal mixture of the source and the upscaled BL image, enabling better performance than residual coding. On the decoder side, a super-resolution (SR) module is used to recover high-resolution details and invert the conditional coding process. Experimental results have shown that our solution is competitive with the VVC full-resolution intra coding while being scalable. |
| Author | Bonnineau, Charles Hamidouche, Wassim Deforges, Olivier Travers, Jean-Francois Sidaty, Naty Aubie, Jean-Yves |
| Author_xml | – sequence: 1 givenname: Charles surname: Bonnineau fullname: Bonnineau, Charles organization: IRT b<>com,Cesson-Sevigne,France – sequence: 2 givenname: Wassim surname: Hamidouche fullname: Hamidouche, Wassim organization: IRT b<>com,Cesson-Sevigne,France – sequence: 3 givenname: Jean-Francois surname: Travers fullname: Travers, Jean-Francois organization: TDF,Cesson-Sevigne,France – sequence: 4 givenname: Naty surname: Sidaty fullname: Sidaty, Naty organization: TDF,Cesson-Sevigne,France – sequence: 5 givenname: Jean-Yves surname: Aubie fullname: Aubie, Jean-Yves organization: IRT b<>com,Cesson-Sevigne,France – sequence: 6 givenname: Olivier surname: Deforges fullname: Deforges, Olivier organization: Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164,Rennes,France |
| BookMark | eNotkMFOwzAQRA0Cibb0C5BQfiDFXju1za2KClSqBGqAa7W2N8IoxFGSHvr3FNHTHN68OcyUXbWpJcbuBV8Iwe3DZ7l5KyQoWAAHsbBLXchCXLCp0GCEKQohL9kElgpyKwt9w-bD8M05hxMAayasKlfraveYlakNcYypxSZbHcZErU-B-gzbkFWHjvp8R0NqDn-VrE59tiXsWzrBDsd4kiqPDbrYxPF4y65rbAaan3PGPp7W7-VLvn193pSrbf4FUo-5884GodH4sPRShFA77kkCcGGV4UYrrD2aWiM4TuDACmXIoENVI0klZ-zufzcS0b7r4w_2x_35A_kLlHJT1A |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/VCIP53242.2021.9675351 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès Toulouse INP et ENVT - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 1728185513 9781728185514 |
| EISSN | 2642-9357 |
| EndPage | 5 |
| ExternalDocumentID | 9675351 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-h237t-bcb9d17a8cd6c31ddfb0ce322019480874afca8f7a2b0e2b29148e8aba4fae343 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768800300037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:25:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h237t-bcb9d17a8cd6c31ddfb0ce322019480874afca8f7a2b0e2b29148e8aba4fae343 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9675351 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec.-5 |
| PublicationDateYYYYMMDD | 2021-12-05 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec.-5 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | Visual communications and image processing (Online) |
| PublicationTitleAbbrev | VCIP |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002513298 |
| Score | 2.1797285 |
| Snippet | In this paper, we present CAESR, an hybrid learning-based coding approach for spatial scalability based on the versatile video coding (VVC) standard. Our... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Conditional Autoencoder Encoding Image coding Scalability Spatial Scalability Super-Resolution Superresolution Training Video coding Visual communication VVC |
| Title | CAESR: Conditional Autoencoder and Super-Resolution for Learned Spatial Scalability |
| URI | https://ieeexplore.ieee.org/document/9675351 |
| WOSCitedRecordID | wos000768800300037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1q8eCpait-swePpk2y2-yut1JaFKQUq9Jbmd2dYC9pSRPBf-9uEiqCF28hZBKYyWbeTOa9JeSOQQTDBGSACiDgwCDQ4NaVBvdNxMiLBVYirs9iNpPLpZq3yP2eC4OI1fAZ9v1h9S_fbkzpW2UD5dAt83zpAyGSmqu176e4PM1iJRsScBSqwfv4aT70eMFVgXHUb4x_7aJSJZFp53-PPya9HzYene_zzAlpYXZKOg18pM3i3HXJYjyaLF4eqDOz67rFR0dlsfFSlRZzCpm7utxiHvieff3GUYdZaaWx6m_lp6ud0cLFrZbv_uqRt-nkdfwYNHsmBB8xE0WgjVY2EiCNTQyLrE11aNA53EE5LkMpOKQGZCog1iHGOlauHkIJGngKyDg7I-1sk-E5oUqElluTSEDLNUolGWjJjFLWhK4QuSBd76PVtpbFWDXuufz79BU58mGoJkGG16Rd5CXekEPzWax3-W0Vy2_D4aEi |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0QNNETKhi_7cGjhba7pbveCIFAREIEDTcyuzuNXAoprYn_3t22wZh48dY0naaZ6XbeTOe9JeSBgg9hF7iLAsBlQMGVYNaVBPNNRN-KBRYirpNoOuXLpZjVyOOeC4OIxfAZtu1h8S9fb1RuW2UdYdAttXzpg5CxwCvZWvuOisnUNBC8ogH7nui898ez0CIGUwcGfrsy_7WPSpFGho3_PcAJaf3w8ZzZPtOckhomZ6RRAUinWp67Jpn3e4P565NjzPS6bPI5vTzbWLFKjakDibk632Lq2q59-c45BrU6hcqqvZWdrzZGcxO5UsD7q0XehoNFf-RWuya4HwGNMlcqKbQfAVe6q6ivdSw9hcblBswx7vGIQayAxxEE0sNABsJURMhBAosBKaPnpJ5sErwgjog8zbTqckDNJHLBKUhOlRBaeaYUuSRN66PVthTGWFXuufr79D05Gi1eJqvJePp8TY5tSIq5kPCG1LM0x1tyqD6z9S69K-L6DVNupGk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Visual+communications+and+image+processing+%28Online%29&rft.atitle=CAESR%3A+Conditional+Autoencoder+and+Super-Resolution+for+Learned+Spatial+Scalability&rft.au=Bonnineau%2C+Charles&rft.au=Hamidouche%2C+Wassim&rft.au=Travers%2C+Jean-Francois&rft.au=Sidaty%2C+Naty&rft.date=2021-12-05&rft.pub=IEEE&rft.eissn=2642-9357&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FVCIP53242.2021.9675351&rft.externalDocID=9675351 |