System-Identification-Based Automatic Brain Tissue Classification for Stereoelectroencephalography

In the cases of drug-resistant epilepsy, patients might undergo resective surgery of the epileptic zone (EZ). The success of the surgery depends on the correct identification of the EZ and the eloquent cortex to be avoided. In both cases, the correct classification of the tissue where the measuring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 26th International Conference on System Theory, Control and Computing (ICSTCC) S. 440 - 445
Hauptverfasser: Pinheiro Machado, Mariana Mulinari, Voda, Alina, Besaneon, Gildas, Becq, Guillaume, David, Olivier, Kahane, Philippe
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 19.10.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the cases of drug-resistant epilepsy, patients might undergo resective surgery of the epileptic zone (EZ). The success of the surgery depends on the correct identification of the EZ and the eloquent cortex to be avoided. In both cases, the correct classification of the tissue where the measuring contacts are inserted is needed during the stereoelectroencephalography (SEEG). Most of the tissue classification procedures rely on imaging. In this paper a system identification based automatic classifier is proposed using previously proposed non-parametric and parametric methods for single contact tissue classification. By combining both identification methods, poorly classified contacts can be eliminated, and overall contact classification can be improved, especially for the parametric classifier. The proposed method can be either used in combination with imaging methods, or it could be used to help select contacts to be recorded during SEEG Investigation.
AbstractList In the cases of drug-resistant epilepsy, patients might undergo resective surgery of the epileptic zone (EZ). The success of the surgery depends on the correct identification of the EZ and the eloquent cortex to be avoided. In both cases, the correct classification of the tissue where the measuring contacts are inserted is needed during the stereoelectroencephalography (SEEG). Most of the tissue classification procedures rely on imaging. In this paper a system identification based automatic classifier is proposed using previously proposed non-parametric and parametric methods for single contact tissue classification. By combining both identification methods, poorly classified contacts can be eliminated, and overall contact classification can be improved, especially for the parametric classifier. The proposed method can be either used in combination with imaging methods, or it could be used to help select contacts to be recorded during SEEG Investigation.
Author Pinheiro Machado, Mariana Mulinari
Becq, Guillaume
Kahane, Philippe
Besaneon, Gildas
David, Olivier
Voda, Alina
Author_xml – sequence: 1
  givenname: Mariana Mulinari
  orcidid: 0000-0002-1635-4714
  surname: Pinheiro Machado
  fullname: Pinheiro Machado, Mariana Mulinari
  organization: Univ. Grenoble Alpes, Grenoble INP GIPSA-lab,Grenoble,France
– sequence: 2
  givenname: Alina
  orcidid: 0000-0001-8138-5499
  surname: Voda
  fullname: Voda, Alina
  organization: Univ. Grenoble Alpes, Grenoble INP GIPSA-lab,Grenoble,France
– sequence: 3
  givenname: Gildas
  orcidid: 0000-0001-5701-6255
  surname: Besaneon
  fullname: Besaneon, Gildas
  organization: Univ. Grenoble Alpes, Grenoble INP GIPSA-lab,Grenoble,France
– sequence: 4
  givenname: Guillaume
  orcidid: 0000-0002-2134-1803
  surname: Becq
  fullname: Becq, Guillaume
  organization: Univ. Grenoble Alpes, CNRS GIPSA-lab,Grenoble,France
– sequence: 5
  givenname: Olivier
  orcidid: 0000-0003-0776-0216
  surname: David
  fullname: David, Olivier
  organization: Aix Marseille Univ, Inserm, INS Institut de Neurosciences des Systèmes,Marseille,France
– sequence: 6
  givenname: Philippe
  orcidid: 0000-0003-1330-3281
  surname: Kahane
  fullname: Kahane, Philippe
  organization: Univ. Grenoble Alpes, CHU Grenoble Alpes Grenoble Institut des Neurosciences, GIN,Grenoble,France
BookMark eNo9j8tqhDAYRlNoF-10nqCbvIA2FxPNckZ6EQZmoV0PMfmtATWSZBa-fQsduvrgcDjwPaH7xS-AEKYkp5So16Zuu7oWomAyZ4SxXClOK8Hu0F6VFZVSFLIspHpEfbvFBHPWWFiSG5zRyfklO-oIFh-uyc-_wOBj0G7BnYvxCriedIz_Lh58wG2CAB4mMCl4WAyso578d9DruD2jh0FPEfa33aGv97eu_sxO54-mPpyykfEyZdISbfqKWasZB1sMUvRAiSGS9doYZQgUsmJ0oEYbJRVwZqsBRC8Kq5jifIde_roOAC5rcLMO2-X2nP8A5oNXEw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSTCC55426.2022.9931852
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665467469
1665467460
EndPage 445
ExternalDocumentID 9931852
Genre orig-research
GrantInformation_xml – fundername: ERC
  grantid: 616268 F-TRACT
  funderid: 10.13039/501100000781
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-h237t-6d0acb82dda23ed4f65be10c062bacc9c0e46821f1cac969e32d8fe5b54d92933
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000889980600074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jan 18 11:15:06 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h237t-6d0acb82dda23ed4f65be10c062bacc9c0e46821f1cac969e32d8fe5b54d92933
ORCID 0000-0001-8138-5499
0000-0001-5701-6255
0000-0002-1635-4714
0000-0003-0776-0216
0000-0003-1330-3281
0000-0002-2134-1803
PageCount 6
ParticipantIDs ieee_primary_9931852
PublicationCentury 2000
PublicationDate 2022-Oct.-19
PublicationDateYYYYMMDD 2022-10-19
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-19
  day: 19
PublicationDecade 2020
PublicationTitle 2022 26th International Conference on System Theory, Control and Computing (ICSTCC)
PublicationTitleAbbrev ICSTCC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8104829
Snippet In the cases of drug-resistant epilepsy, patients might undergo resective surgery of the epileptic zone (EZ). The success of the surgery depends on the correct...
SourceID ieee
SourceType Publisher
StartPage 440
SubjectTerms brain tissue classification
Control systems
Epilepsy
Feature extraction
Frequency-domain analysis
Magnetic resonance imaging
Medical services
non-integer order model
non-parametric frequency domain identifi-cation
SEEG
Surgery
system identification based classification
Title System-Identification-Based Automatic Brain Tissue Classification for Stereoelectroencephalography
URI https://ieeexplore.ieee.org/document/9931852
WOSCitedRecordID wos000889980600074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1t8eBJpRW_ycGjabPZ3WxytItFL6XQCr2VfEyol26pW3-_SXZbEbx4CyEQmEDeZDLvPYQeTSjbi9QRawIlhypHZKb9Y0VAZmiicw4umk0U06lYLuWsg56OXBgAiM1nMAzD-JdvK7MPpbKRx9LA9e2iblEUDVfr0JxD5eitnC_K0sMjC60HjA3b5b98UyJsTM7-t-E5Gvzw7_DsiCwXqAObPtKNuDhpqLWurbWRsYchi5_3dRXFV_E4eD7gRYwnjpaXx7XYJ6h47gMJVet-E3bartVBt3qA3icvi_KVtA4JZM3SoibcUmW0YNYqloLNHM81JNRQzrQyRhoKGRcscYlRRnIJKbPCQa7zzPq8KE0vUW9TbeAK4aB7lknjcuffqU5QITmTTrvCj60Ceo36IT6rbSOCsWpDc_P39C06DUcQLvlE3qFevdvDPToxX_XH5-4hntw34MufBQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1zCnpS2cTf5uDRbmmadsnRFceGcwxWYbfRJF-Yl3XMzr_fJO0mghdvISQEvkBe8uV77yH0qFzankcm0MpRckhuAsGkfaxwYIqEMk7AeLOJ3mTC53MxbaCnPRcGAHzxGXRc0__l60JtXaqsa7HUcX0P0GHMGA0rttauPIeI7iidZWlqAZK64gNKO_WEX84pHjgGp_9b8gy1fxh4eLrHlnPUgFULyUpePKjItabOtgV9C0QaP2_Lwsuv4r5zfcCZjyj2ppf7sdheUfHMhhKK2v_GrbRe5jvl6jZ6H7xk6TCoPRKCJY16ZZBokivJqdY5jUAzk8QSQqJIQmWulFAEWMJpaEKVK5EIiKjmBmIZM21vRlF0gZqrYgWXCDvlMyaUiY19qRpOuEioMNL0bFvnQK5Qy8Vnsa5kMBZ1aK7_7n5Ax8PsbbwYjyavN-jEbYc78kNxi5rlZgt36Eh9lR-fm3u_i99QNqJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+26th+International+Conference+on+System+Theory%2C+Control+and+Computing+%28ICSTCC%29&rft.atitle=System-Identification-Based+Automatic+Brain+Tissue+Classification+for+Stereoelectroencephalography&rft.au=Pinheiro+Machado%2C+Mariana+Mulinari&rft.au=Voda%2C+Alina&rft.au=Besaneon%2C+Gildas&rft.au=Becq%2C+Guillaume&rft.date=2022-10-19&rft.pub=IEEE&rft.spage=440&rft.epage=445&rft_id=info:doi/10.1109%2FICSTCC55426.2022.9931852&rft.externalDocID=9931852