System-Identification-Based Automatic Brain Tissue Classification for Stereoelectroencephalography
In the cases of drug-resistant epilepsy, patients might undergo resective surgery of the epileptic zone (EZ). The success of the surgery depends on the correct identification of the EZ and the eloquent cortex to be avoided. In both cases, the correct classification of the tissue where the measuring...
Gespeichert in:
| Veröffentlicht in: | 2022 26th International Conference on System Theory, Control and Computing (ICSTCC) S. 440 - 445 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
19.10.2022
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the cases of drug-resistant epilepsy, patients might undergo resective surgery of the epileptic zone (EZ). The success of the surgery depends on the correct identification of the EZ and the eloquent cortex to be avoided. In both cases, the correct classification of the tissue where the measuring contacts are inserted is needed during the stereoelectroencephalography (SEEG). Most of the tissue classification procedures rely on imaging. In this paper a system identification based automatic classifier is proposed using previously proposed non-parametric and parametric methods for single contact tissue classification. By combining both identification methods, poorly classified contacts can be eliminated, and overall contact classification can be improved, especially for the parametric classifier. The proposed method can be either used in combination with imaging methods, or it could be used to help select contacts to be recorded during SEEG Investigation. |
|---|---|
| AbstractList | In the cases of drug-resistant epilepsy, patients might undergo resective surgery of the epileptic zone (EZ). The success of the surgery depends on the correct identification of the EZ and the eloquent cortex to be avoided. In both cases, the correct classification of the tissue where the measuring contacts are inserted is needed during the stereoelectroencephalography (SEEG). Most of the tissue classification procedures rely on imaging. In this paper a system identification based automatic classifier is proposed using previously proposed non-parametric and parametric methods for single contact tissue classification. By combining both identification methods, poorly classified contacts can be eliminated, and overall contact classification can be improved, especially for the parametric classifier. The proposed method can be either used in combination with imaging methods, or it could be used to help select contacts to be recorded during SEEG Investigation. |
| Author | Pinheiro Machado, Mariana Mulinari Becq, Guillaume Kahane, Philippe Besaneon, Gildas David, Olivier Voda, Alina |
| Author_xml | – sequence: 1 givenname: Mariana Mulinari orcidid: 0000-0002-1635-4714 surname: Pinheiro Machado fullname: Pinheiro Machado, Mariana Mulinari organization: Univ. Grenoble Alpes, Grenoble INP GIPSA-lab,Grenoble,France – sequence: 2 givenname: Alina orcidid: 0000-0001-8138-5499 surname: Voda fullname: Voda, Alina organization: Univ. Grenoble Alpes, Grenoble INP GIPSA-lab,Grenoble,France – sequence: 3 givenname: Gildas orcidid: 0000-0001-5701-6255 surname: Besaneon fullname: Besaneon, Gildas organization: Univ. Grenoble Alpes, Grenoble INP GIPSA-lab,Grenoble,France – sequence: 4 givenname: Guillaume orcidid: 0000-0002-2134-1803 surname: Becq fullname: Becq, Guillaume organization: Univ. Grenoble Alpes, CNRS GIPSA-lab,Grenoble,France – sequence: 5 givenname: Olivier orcidid: 0000-0003-0776-0216 surname: David fullname: David, Olivier organization: Aix Marseille Univ, Inserm, INS Institut de Neurosciences des Systèmes,Marseille,France – sequence: 6 givenname: Philippe orcidid: 0000-0003-1330-3281 surname: Kahane fullname: Kahane, Philippe organization: Univ. Grenoble Alpes, CHU Grenoble Alpes Grenoble Institut des Neurosciences, GIN,Grenoble,France |
| BookMark | eNo9j8tqhDAYRlNoF-10nqCbvIA2FxPNckZ6EQZmoV0PMfmtATWSZBa-fQsduvrgcDjwPaH7xS-AEKYkp5So16Zuu7oWomAyZ4SxXClOK8Hu0F6VFZVSFLIspHpEfbvFBHPWWFiSG5zRyfklO-oIFh-uyc-_wOBj0G7BnYvxCriedIz_Lh58wG2CAB4mMCl4WAyso578d9DruD2jh0FPEfa33aGv97eu_sxO54-mPpyykfEyZdISbfqKWasZB1sMUvRAiSGS9doYZQgUsmJ0oEYbJRVwZqsBRC8Kq5jifIde_roOAC5rcLMO2-X2nP8A5oNXEw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICSTCC55426.2022.9931852 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665467469 1665467460 |
| EndPage | 445 |
| ExternalDocumentID | 9931852 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: ERC grantid: 616268 F-TRACT funderid: 10.13039/501100000781 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-h237t-6d0acb82dda23ed4f65be10c062bacc9c0e46821f1cac969e32d8fe5b54d92933 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000889980600074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jan 18 11:15:06 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h237t-6d0acb82dda23ed4f65be10c062bacc9c0e46821f1cac969e32d8fe5b54d92933 |
| ORCID | 0000-0001-8138-5499 0000-0001-5701-6255 0000-0002-1635-4714 0000-0003-0776-0216 0000-0003-1330-3281 0000-0002-2134-1803 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9931852 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Oct.-19 |
| PublicationDateYYYYMMDD | 2022-10-19 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 26th International Conference on System Theory, Control and Computing (ICSTCC) |
| PublicationTitleAbbrev | ICSTCC |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8104829 |
| Snippet | In the cases of drug-resistant epilepsy, patients might undergo resective surgery of the epileptic zone (EZ). The success of the surgery depends on the correct... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 440 |
| SubjectTerms | brain tissue classification Control systems Epilepsy Feature extraction Frequency-domain analysis Magnetic resonance imaging Medical services non-integer order model non-parametric frequency domain identifi-cation SEEG Surgery system identification based classification |
| Title | System-Identification-Based Automatic Brain Tissue Classification for Stereoelectroencephalography |
| URI | https://ieeexplore.ieee.org/document/9931852 |
| WOSCitedRecordID | wos000889980600074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1t8eBJpRW_ycGjabPZ3WxytItFL6XQCr2VfEyol26pW3-_SXZbEbx4CyEQmEDeZDLvPYQeTSjbi9QRawIlhypHZKb9Y0VAZmiicw4umk0U06lYLuWsg56OXBgAiM1nMAzD-JdvK7MPpbKRx9LA9e2iblEUDVfr0JxD5eitnC_K0sMjC60HjA3b5b98UyJsTM7-t-E5Gvzw7_DsiCwXqAObPtKNuDhpqLWurbWRsYchi5_3dRXFV_E4eD7gRYwnjpaXx7XYJ6h47gMJVet-E3bartVBt3qA3icvi_KVtA4JZM3SoibcUmW0YNYqloLNHM81JNRQzrQyRhoKGRcscYlRRnIJKbPCQa7zzPq8KE0vUW9TbeAK4aB7lknjcuffqU5QITmTTrvCj60Ceo36IT6rbSOCsWpDc_P39C06DUcQLvlE3qFevdvDPToxX_XH5-4hntw34MufBQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGA1zCnpS2cTf5uDRbmmadsnRFceGcwxWYbfRJF-Yl3XMzr_fJO0mghdvISQEvkBe8uV77yH0qFzankcm0MpRckhuAsGkfaxwYIqEMk7AeLOJ3mTC53MxbaCnPRcGAHzxGXRc0__l60JtXaqsa7HUcX0P0GHMGA0rttauPIeI7iidZWlqAZK64gNKO_WEX84pHjgGp_9b8gy1fxh4eLrHlnPUgFULyUpePKjItabOtgV9C0QaP2_Lwsuv4r5zfcCZjyj2ppf7sdheUfHMhhKK2v_GrbRe5jvl6jZ6H7xk6TCoPRKCJY16ZZBokivJqdY5jUAzk8QSQqJIQmWulFAEWMJpaEKVK5EIiKjmBmIZM21vRlF0gZqrYgWXCDvlMyaUiY19qRpOuEioMNL0bFvnQK5Qy8Vnsa5kMBZ1aK7_7n5Ax8PsbbwYjyavN-jEbYc78kNxi5rlZgt36Eh9lR-fm3u_i99QNqJM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+26th+International+Conference+on+System+Theory%2C+Control+and+Computing+%28ICSTCC%29&rft.atitle=System-Identification-Based+Automatic+Brain+Tissue+Classification+for+Stereoelectroencephalography&rft.au=Pinheiro+Machado%2C+Mariana+Mulinari&rft.au=Voda%2C+Alina&rft.au=Besaneon%2C+Gildas&rft.au=Becq%2C+Guillaume&rft.date=2022-10-19&rft.pub=IEEE&rft.spage=440&rft.epage=445&rft_id=info:doi/10.1109%2FICSTCC55426.2022.9931852&rft.externalDocID=9931852 |