INCdeep: Intelligent Network Coding with Deep Reinforcement Learning
In this paper, we address the problem of building adaptive network coding coefficients under dynamic network conditions (e.g., varying link quality and changing number of relays). In existing linear network coding solutions including deterministic network coding and random linear network coding, cod...
Gespeichert in:
| Veröffentlicht in: | Annual Joint Conference of the IEEE Computer and Communications Societies S. 1 - 10 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
10.05.2021
|
| Schlagworte: | |
| ISSN: | 2641-9874 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we address the problem of building adaptive network coding coefficients under dynamic network conditions (e.g., varying link quality and changing number of relays). In existing linear network coding solutions including deterministic network coding and random linear network coding, coding coefficients are set by a heuristic or randomly chosen from a Galois field with equal probability, which can not adapt to dynamic network conditions with good decoding performance. We propose INCdeep, an adaptive Intelligent Network Coding with Deep Reinforcement Learning. Specifically, we formulate a coding coefficients selection problem where network variations can be automatically and continuously expressed as the state transitions of a Markov decision process (MDP). The key advantage is that INCdeep is able to learn and dynamically adjust the coding coefficients for the source node and each relay node according to ongoing network conditions, instead of randomly. The results show that INCdeep has generalization ability that adapts well in dynamic scenarios where link quality is changing fast, and it converges fast in the training process. Compared with the benchmark coding algorithms, INCdeep shows superior performance, including higher decoding probability and lower coding overhead through simulations and experiments. |
|---|---|
| AbstractList | In this paper, we address the problem of building adaptive network coding coefficients under dynamic network conditions (e.g., varying link quality and changing number of relays). In existing linear network coding solutions including deterministic network coding and random linear network coding, coding coefficients are set by a heuristic or randomly chosen from a Galois field with equal probability, which can not adapt to dynamic network conditions with good decoding performance. We propose INCdeep, an adaptive Intelligent Network Coding with Deep Reinforcement Learning. Specifically, we formulate a coding coefficients selection problem where network variations can be automatically and continuously expressed as the state transitions of a Markov decision process (MDP). The key advantage is that INCdeep is able to learn and dynamically adjust the coding coefficients for the source node and each relay node according to ongoing network conditions, instead of randomly. The results show that INCdeep has generalization ability that adapts well in dynamic scenarios where link quality is changing fast, and it converges fast in the training process. Compared with the benchmark coding algorithms, INCdeep shows superior performance, including higher decoding probability and lower coding overhead through simulations and experiments. |
| Author | Liu, Cunzhuang Liu, Jianmin He, Chentao Wang, Qi Wang, Yongqing Xu, Yongjun Jaffres-Runser, Katia |
| Author_xml | – sequence: 1 givenname: Qi surname: Wang fullname: Wang, Qi email: wangqi08@ict.ac.cn organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China – sequence: 2 givenname: Jianmin surname: Liu fullname: Liu, Jianmin email: liujianmin18z@ict.ac.cn organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China – sequence: 3 givenname: Katia surname: Jaffres-Runser fullname: Jaffres-Runser, Katia email: katia.jaffres-runser@irit.fr organization: Université de Toulouse, IRIT / ENSEEIHT,Toulouse,France,F-31061 – sequence: 4 givenname: Yongqing surname: Wang fullname: Wang, Yongqing email: wangyongqing@ict.ac.cn organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China – sequence: 5 givenname: Chentao surname: He fullname: He, Chentao email: hechentao@ict.ac.cn organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China – sequence: 6 givenname: Cunzhuang surname: Liu fullname: Liu, Cunzhuang email: liucunzhuang20g@ict.ac.cn organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China – sequence: 7 givenname: Yongjun surname: Xu fullname: Xu, Yongjun email: xyj@ict.ac.cn organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China |
| BookMark | eNotz81Og0AUhuHRaGJbewVu8ALA-TucwZ2hVkkQEqPrZmAOLUqHBkga794au_o2T77knbMr33ti7F7wSAiePGTFukzLNy0TIyLJpYgSbQwiv2DLBI2IY9BcSZCXbCZjLcLEoL5h83H84pwblPGMrbIidUSHxyDzE3VduyU_BQVNx374DtLetX4bHNtpF6xOKnin1jf9UNP-j-VkB38Ct-y6sd1Iy_Mu2Of6-SN9DfPyJUuf8nAnFU6htk6DAgBbk6sQuDWuqnliYmjqRikkUwtswIpKxFi7yipAXWkCMAgO1YLd_f-2RLQ5DO3eDj-bc7T6BRmdTrU |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/INFOCOM42981.2021.9488770 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781665403252 166540325X |
| EISSN | 2641-9874 |
| EndPage | 10 |
| ExternalDocumentID | 9488770 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-h237t-4ad453555acedb750a8dbc09865fcf337e8c17f5a1b167cdba3574b4e55875d73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702210400104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:39:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h237t-4ad453555acedb750a8dbc09865fcf337e8c17f5a1b167cdba3574b4e55875d73 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9488770 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-May-10 |
| PublicationDateYYYYMMDD | 2021-05-10 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-May-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Annual Joint Conference of the IEEE Computer and Communications Societies |
| PublicationTitleAbbrev | INFOCOM |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0008726 |
| Score | 2.2411218 |
| Snippet | In this paper, we address the problem of building adaptive network coding coefficients under dynamic network conditions (e.g., varying link quality and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptive systems Buildings Deep Reinforcement learning Fountain codes Heuristic algorithms Intelligent networks Network coding Reinforcement learning RLNC Simulation |
| Title | INCdeep: Intelligent Network Coding with Deep Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/9488770 |
| WOSCitedRecordID | wos000702210400104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qEdGLj1Z8E8GjaXc3ySbrtVos6LaIQm8lm0zVS1vq1t9vki6rghdvIWQIzISZfJPMNwBXSRKnGCdIIx0JyjlyqtPUUKaQMVbEqShC15IHmedqPM5GDbiua2EQMXw-w44fhrd8OzcrnyrrZu60SekA-oaU6bpWq_a6SibpFlxWHJrdQd4f9oaPztsqjwKTuFMJ_-qiEoJIf_d_2-9B-7saj4zqOLMPDZwdwM4PIsEW3DpsbhEXN2RQU2yWJF9_8Sa9uRckPuVKbt0q8oSBL9WE1CCpKFZf2_DSv3vu3dOqPwJ9S5gsKdeWC3dfENqgLVzo18oWJspUKqZmyphEZWI5FTp2OpfGFpoJyQuOQjiUYiU7hOZsPsMjIDpTiusosp6OZiqFFoXMnBGZUJnOZHIMLa-PyWJNgTGpVHHy9_QpbHuV00ByegbNcrnCc9g0n-X7x_Ii2O0LkluYKA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4IGh8XH2B8WxOPFnb72Ha9ggQiLMRgwo1021n1AgQXf7_tskFNvHhrmk7SzDQz_aadbxC6ozSMIKRAAh0IwjlwoqPIEKaAMZaGkUiLriV9mSRqMolHFXS_qYUBgOLzGTT8sHjLt3Oz8qmyZuxOm5QOoG8Jzmmwrtba-F0labSDbksWzWYv6Qxbw4Hzt8rjQBo2SvFffVSKMNI5-N8GDlH9ux4PjzaR5ghVYHaM9n9QCdZQ26FzC7B4wL0NyWaOk_Unb9yae0Hsk6647VbhZygYU02RHMQlyeprHb10HsetLik7JJA3ymROuLZcuBuD0AZs6oK_VjY1QawikZmMMQnKhDITOnRal8ammgnJUw5COJxiJTtB1dl8BqcI61gproPAekKaTAotUhk7MzKhYh1LeoZqXh_TxZoEY1qq4vzv6Ru02x0P-tN-L3m6QHte_aSgPL1E1Xy5giu0bT7z94_ldWHDL62xm28 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Annual+Joint+Conference+of+the+IEEE+Computer+and+Communications+Societies&rft.atitle=INCdeep%3A+Intelligent+Network+Coding+with+Deep+Reinforcement+Learning&rft.au=Wang%2C+Qi&rft.au=Liu%2C+Jianmin&rft.au=Jaffres-Runser%2C+Katia&rft.au=Wang%2C+Yongqing&rft.date=2021-05-10&rft.pub=IEEE&rft.eissn=2641-9874&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FINFOCOM42981.2021.9488770&rft.externalDocID=9488770 |