INCdeep: Intelligent Network Coding with Deep Reinforcement Learning

In this paper, we address the problem of building adaptive network coding coefficients under dynamic network conditions (e.g., varying link quality and changing number of relays). In existing linear network coding solutions including deterministic network coding and random linear network coding, cod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual Joint Conference of the IEEE Computer and Communications Societies S. 1 - 10
Hauptverfasser: Wang, Qi, Liu, Jianmin, Jaffres-Runser, Katia, Wang, Yongqing, He, Chentao, Liu, Cunzhuang, Xu, Yongjun
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 10.05.2021
Schlagworte:
ISSN:2641-9874
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we address the problem of building adaptive network coding coefficients under dynamic network conditions (e.g., varying link quality and changing number of relays). In existing linear network coding solutions including deterministic network coding and random linear network coding, coding coefficients are set by a heuristic or randomly chosen from a Galois field with equal probability, which can not adapt to dynamic network conditions with good decoding performance. We propose INCdeep, an adaptive Intelligent Network Coding with Deep Reinforcement Learning. Specifically, we formulate a coding coefficients selection problem where network variations can be automatically and continuously expressed as the state transitions of a Markov decision process (MDP). The key advantage is that INCdeep is able to learn and dynamically adjust the coding coefficients for the source node and each relay node according to ongoing network conditions, instead of randomly. The results show that INCdeep has generalization ability that adapts well in dynamic scenarios where link quality is changing fast, and it converges fast in the training process. Compared with the benchmark coding algorithms, INCdeep shows superior performance, including higher decoding probability and lower coding overhead through simulations and experiments.
AbstractList In this paper, we address the problem of building adaptive network coding coefficients under dynamic network conditions (e.g., varying link quality and changing number of relays). In existing linear network coding solutions including deterministic network coding and random linear network coding, coding coefficients are set by a heuristic or randomly chosen from a Galois field with equal probability, which can not adapt to dynamic network conditions with good decoding performance. We propose INCdeep, an adaptive Intelligent Network Coding with Deep Reinforcement Learning. Specifically, we formulate a coding coefficients selection problem where network variations can be automatically and continuously expressed as the state transitions of a Markov decision process (MDP). The key advantage is that INCdeep is able to learn and dynamically adjust the coding coefficients for the source node and each relay node according to ongoing network conditions, instead of randomly. The results show that INCdeep has generalization ability that adapts well in dynamic scenarios where link quality is changing fast, and it converges fast in the training process. Compared with the benchmark coding algorithms, INCdeep shows superior performance, including higher decoding probability and lower coding overhead through simulations and experiments.
Author Liu, Cunzhuang
Liu, Jianmin
He, Chentao
Wang, Qi
Wang, Yongqing
Xu, Yongjun
Jaffres-Runser, Katia
Author_xml – sequence: 1
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  email: wangqi08@ict.ac.cn
  organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China
– sequence: 2
  givenname: Jianmin
  surname: Liu
  fullname: Liu, Jianmin
  email: liujianmin18z@ict.ac.cn
  organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China
– sequence: 3
  givenname: Katia
  surname: Jaffres-Runser
  fullname: Jaffres-Runser, Katia
  email: katia.jaffres-runser@irit.fr
  organization: Université de Toulouse, IRIT / ENSEEIHT,Toulouse,France,F-31061
– sequence: 4
  givenname: Yongqing
  surname: Wang
  fullname: Wang, Yongqing
  email: wangyongqing@ict.ac.cn
  organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China
– sequence: 5
  givenname: Chentao
  surname: He
  fullname: He, Chentao
  email: hechentao@ict.ac.cn
  organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China
– sequence: 6
  givenname: Cunzhuang
  surname: Liu
  fullname: Liu, Cunzhuang
  email: liucunzhuang20g@ict.ac.cn
  organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China
– sequence: 7
  givenname: Yongjun
  surname: Xu
  fullname: Xu, Yongjun
  email: xyj@ict.ac.cn
  organization: Chinese Academy of Sciences,Institute of Computing Technology,Beijing,China
BookMark eNotz81Og0AUhuHRaGJbewVu8ALA-TucwZ2hVkkQEqPrZmAOLUqHBkga794au_o2T77knbMr33ti7F7wSAiePGTFukzLNy0TIyLJpYgSbQwiv2DLBI2IY9BcSZCXbCZjLcLEoL5h83H84pwblPGMrbIidUSHxyDzE3VduyU_BQVNx374DtLetX4bHNtpF6xOKnin1jf9UNP-j-VkB38Ct-y6sd1Iy_Mu2Of6-SN9DfPyJUuf8nAnFU6htk6DAgBbk6sQuDWuqnliYmjqRikkUwtswIpKxFi7yipAXWkCMAgO1YLd_f-2RLQ5DO3eDj-bc7T6BRmdTrU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/INFOCOM42981.2021.9488770
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665403252
166540325X
EISSN 2641-9874
EndPage 10
ExternalDocumentID 9488770
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-h237t-4ad453555acedb750a8dbc09865fcf337e8c17f5a1b167cdba3574b4e55875d73
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702210400104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:39:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h237t-4ad453555acedb750a8dbc09865fcf337e8c17f5a1b167cdba3574b4e55875d73
PageCount 10
ParticipantIDs ieee_primary_9488770
PublicationCentury 2000
PublicationDate 2021-May-10
PublicationDateYYYYMMDD 2021-05-10
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May-10
  day: 10
PublicationDecade 2020
PublicationTitle Annual Joint Conference of the IEEE Computer and Communications Societies
PublicationTitleAbbrev INFOCOM
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008726
Score 2.2411218
Snippet In this paper, we address the problem of building adaptive network coding coefficients under dynamic network conditions (e.g., varying link quality and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptive systems
Buildings
Deep Reinforcement learning
Fountain codes
Heuristic algorithms
Intelligent networks
Network coding
Reinforcement learning
RLNC
Simulation
Title INCdeep: Intelligent Network Coding with Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9488770
WOSCitedRecordID wos000702210400104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qEdGLj1Z8E8GjaXc3ySbrtVos6LaIQm8lm0zVS1vq1t9vki6rghdvIWQIzISZfJPMNwBXSRKnGCdIIx0JyjlyqtPUUKaQMVbEqShC15IHmedqPM5GDbiua2EQMXw-w44fhrd8OzcrnyrrZu60SekA-oaU6bpWq_a6SibpFlxWHJrdQd4f9oaPztsqjwKTuFMJ_-qiEoJIf_d_2-9B-7saj4zqOLMPDZwdwM4PIsEW3DpsbhEXN2RQU2yWJF9_8Sa9uRckPuVKbt0q8oSBL9WE1CCpKFZf2_DSv3vu3dOqPwJ9S5gsKdeWC3dfENqgLVzo18oWJspUKqZmyphEZWI5FTp2OpfGFpoJyQuOQjiUYiU7hOZsPsMjIDpTiusosp6OZiqFFoXMnBGZUJnOZHIMLa-PyWJNgTGpVHHy9_QpbHuV00ByegbNcrnCc9g0n-X7x_Ii2O0LkluYKA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4IGh8XH2B8WxOPFnb72Ha9ggQiLMRgwo1021n1AgQXf7_tskFNvHhrmk7SzDQz_aadbxC6ozSMIKRAAh0IwjlwoqPIEKaAMZaGkUiLriV9mSRqMolHFXS_qYUBgOLzGTT8sHjLt3Oz8qmyZuxOm5QOoG8Jzmmwrtba-F0labSDbksWzWYv6Qxbw4Hzt8rjQBo2SvFffVSKMNI5-N8GDlH9ux4PjzaR5ghVYHaM9n9QCdZQ26FzC7B4wL0NyWaOk_Unb9yae0Hsk6647VbhZygYU02RHMQlyeprHb10HsetLik7JJA3ymROuLZcuBuD0AZs6oK_VjY1QawikZmMMQnKhDITOnRal8ammgnJUw5COJxiJTtB1dl8BqcI61gproPAekKaTAotUhk7MzKhYh1LeoZqXh_TxZoEY1qq4vzv6Ru02x0P-tN-L3m6QHte_aSgPL1E1Xy5giu0bT7z94_ldWHDL62xm28
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Annual+Joint+Conference+of+the+IEEE+Computer+and+Communications+Societies&rft.atitle=INCdeep%3A+Intelligent+Network+Coding+with+Deep+Reinforcement+Learning&rft.au=Wang%2C+Qi&rft.au=Liu%2C+Jianmin&rft.au=Jaffres-Runser%2C+Katia&rft.au=Wang%2C+Yongqing&rft.date=2021-05-10&rft.pub=IEEE&rft.eissn=2641-9874&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FINFOCOM42981.2021.9488770&rft.externalDocID=9488770