Efficient Autoprecoder-based deep learning for massive MU-MIMO Downlink under PA Non-Linearities

This paper introduces a new efficient autopre-coder (AP) based deep learning approach for massive multiple-input multiple-output (mMIMO) downlink systems in which the base station is equipped with a large number of antennas with energy-efficient power amplifiers (PAs) and serves multiple user termin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC pp. 1039 - 1044
Main Authors: Cheng, Xinying, Zayani, Rafik, Ferecatu, Marin, Audebert, Nicolas
Format: Conference Proceeding
Language:English
Published: IEEE 10.04.2022
Subjects:
ISSN:1558-2612
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper introduces a new efficient autopre-coder (AP) based deep learning approach for massive multiple-input multiple-output (mMIMO) downlink systems in which the base station is equipped with a large number of antennas with energy-efficient power amplifiers (PAs) and serves multiple user terminals. We present AP-mMIMO, a new method that jointly eliminates the multi-user interference and compensates the severe nonlinear (NL) PA distortions. Unlike previous works, AP-mMIMO has a low computational complexity, making it suitable for a global energy-efficient system. Specifically, we aim to design the PA-aware precoder and the receive decoder by leveraging the concept of autoprecoder, whereas the end-to-end massive multi-user (MU)-MIMO downlink is designed using a deep neural network (NN). Most importantly, the proposed AP-mMIMO is suited for the varying block fading channel scenario. To deal with such scenarios, we consider a two-stage precoding scheme: 1) a NN-precoder is used to address the PA non-linearities and 2) a linear precoder is used to suppress the multi-user interference. The NN-precoder and the receive decoder are trained off-line and when the channel varies, only the linear precoder changes on-line. This latter is designed by using the widely used zero-forcing precoding scheme or its low-complexity version based on matrix polynomials. Numerical simulations show that the proposed AP-mMIMO approach achieves competitive performance with a significantly lower complexity compared to existing literature.
AbstractList This paper introduces a new efficient autopre-coder (AP) based deep learning approach for massive multiple-input multiple-output (mMIMO) downlink systems in which the base station is equipped with a large number of antennas with energy-efficient power amplifiers (PAs) and serves multiple user terminals. We present AP-mMIMO, a new method that jointly eliminates the multi-user interference and compensates the severe nonlinear (NL) PA distortions. Unlike previous works, AP-mMIMO has a low computational complexity, making it suitable for a global energy-efficient system. Specifically, we aim to design the PA-aware precoder and the receive decoder by leveraging the concept of autoprecoder, whereas the end-to-end massive multi-user (MU)-MIMO downlink is designed using a deep neural network (NN). Most importantly, the proposed AP-mMIMO is suited for the varying block fading channel scenario. To deal with such scenarios, we consider a two-stage precoding scheme: 1) a NN-precoder is used to address the PA non-linearities and 2) a linear precoder is used to suppress the multi-user interference. The NN-precoder and the receive decoder are trained off-line and when the channel varies, only the linear precoder changes on-line. This latter is designed by using the widely used zero-forcing precoding scheme or its low-complexity version based on matrix polynomials. Numerical simulations show that the proposed AP-mMIMO approach achieves competitive performance with a significantly lower complexity compared to existing literature.
Author Ferecatu, Marin
Audebert, Nicolas
Zayani, Rafik
Cheng, Xinying
Author_xml – sequence: 1
  givenname: Xinying
  surname: Cheng
  fullname: Cheng, Xinying
  organization: Conservatoire National des Arts et Métiers,CEDRIC (EA4329),Paris,France,75003
– sequence: 2
  givenname: Rafik
  surname: Zayani
  fullname: Zayani, Rafik
  organization: Univ. Grenoble Alpes,CEA-Leti,Grenoble,France,F-38000
– sequence: 3
  givenname: Marin
  surname: Ferecatu
  fullname: Ferecatu, Marin
  organization: Conservatoire National des Arts et Métiers,CEDRIC (EA4329),Paris,France,75003
– sequence: 4
  givenname: Nicolas
  surname: Audebert
  fullname: Audebert, Nicolas
  organization: Conservatoire National des Arts et Métiers,CEDRIC (EA4329),Paris,France,75003
BookMark eNotkM1OAjEURqvRRECfwMT0BYq97bSdWZIRlIQfFxKXWNpbrUKHTAeNby-JrM7iy_kWp08uUpOQkDvgQwBe3b_Wi1oBNzAUXIhhZQzoSp2RPmitikJoLc5JD5QqmdAgrkg_50_OBT-OPfI2DiG6iKmjo0PX7Ft0jceWbWxGTz3inm7Rtimmdxqalu5szvEb6XzF5tP5kj40P2kb0xc9pKNGn0d00SQ2i-koxS5iviaXwW4z3pw4IKvJ-KV-YrPl47QezdiHkKZjEFwh1UZqDKV14ITCAGWBtirBKFN4DWCkUU6hE74UXmpeFDaEUlQbCV4OyO3_b0TE9b6NO9v-rk815B9xzlZt
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCNC51071.2022.9771695
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665442662
9781665442664
EISSN 1558-2612
EndPage 1044
ExternalDocumentID 9771695
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-h237t-1fc435b36ef8ac1c25ef184ea9817574d6117375c5ec2d82d36044aff829b31d3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819473100176&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:37:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h237t-1fc435b36ef8ac1c25ef184ea9817574d6117375c5ec2d82d36044aff829b31d3
PageCount 6
ParticipantIDs ieee_primary_9771695
PublicationCentury 2000
PublicationDate 2022-April-10
PublicationDateYYYYMMDD 2022-04-10
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-April-10
  day: 10
PublicationDecade 2020
PublicationTitle IEEE Wireless Communications and Networking Conference : [proceedings] : WCNC
PublicationTitleAbbrev WCNC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020544
Score 2.2205172
Snippet This paper introduces a new efficient autopre-coder (AP) based deep learning approach for massive multiple-input multiple-output (mMIMO) downlink systems in...
SourceID ieee
SourceType Publisher
StartPage 1039
SubjectTerms Artificial neural networks
autoprecoder
Channel estimation
Deep learning
Downlink
energy-efficiency
Fading channels
hardware impairment
Interference
massive multipleinput multiple-output (MIMO)
multi-user (MU) precoding
neural network (NN)
power amplifier (PA) nonlinearities
Precoding
Title Efficient Autoprecoder-based deep learning for massive MU-MIMO Downlink under PA Non-Linearities
URI https://ieeexplore.ieee.org/document/9771695
WOSCitedRecordID wos000819473100176&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaigEWPlrEtzww4ja2k9geq9IKJBo6UOhWEn8AA2kVUn4_5zQqILGwWbFOkXyW77047x1Cl8plUZYGnDieAkFRcUqgKipijXIusoGOKge-xzuRJHI2U5MGutpoYay11c9ntuuH1V2-WeiV_1TWA6xCYxU1UVOIeK3V2pArgB5hrQCmgeo9DZIBbDfhKSBj3TryVwuVqoKMdv_37j3U-Zbi4cmmyOyjhs0P0M4PF8E2eh5WNhAQjvur0nc18Tr1gvgCZbCxdonr3hAvGCAqfge8DGccHk_J-HZ8j6-9Xz5QUuz1ZAWe9HGyyAmQVAiq_FY7aDoaPgxuSN04gbwyLkpCnQYUlPHYOplqqllkHTA5myoJaEGEJqZUcBHpyGpmJDM8DsIwdU4ylXFq-CFq5YvcHiEMAIwxSQOYVGFkjJIWchlkLotDk8nsGLX9Ws2Xa2-Meb1MJ38_PkXbPh3-NoYGZ6hVFit7jrb0Z_n2UVxUCf0CyFqiMw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKQQIWPlrENx4YcRs7cRKPVWnViiZ0aKFbSfwBDKRVSPn9nENUQGJhs2KdIvks33tx3juEroVJeZo4LjFuAgRF-AmBqiiIVsIYrh3JSwe-h1EQx-FsJsY1dLPWwmity5_PdMsOy7t8tZAr-6msDViF-oJvoE3uecz5Umut6RWAD6_SAFNHtB-7cRc2XGBJIGOtKvZXE5WyhvT3_vf2fdT8FuPh8brMHKCazg7R7g8fwQZ66pVGEBCOO6vC9jWxSvWc2BKlsNJ6iavuEM8YQCp-A8QMpxyOpiQaRvf41jrmAynFVlGW43EHx4uMAE2FoNJxtYmm_d6kOyBV6wTywtygINRIwEGp62sTJpJKxrUBLqcTEQJeCDzlUxq4AZdcS6ZCplzf8bzEmJCJ1KXKPUL1bJHpY4QBgjEWUgcmhceVEqGGbDqpSX1PpWF6ghp2rebLL3eMebVMp38_vkLbg0k0mo-G8d0Z2rGpsXcz1DlH9SJf6Qu0JT-K1_f8skzuJ2cipXo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Wireless+Communications+and+Networking+Conference+%3A+%5Bproceedings%5D+%3A+WCNC&rft.atitle=Efficient+Autoprecoder-based+deep+learning+for+massive+MU-MIMO+Downlink+under+PA+Non-Linearities&rft.au=Cheng%2C+Xinying&rft.au=Zayani%2C+Rafik&rft.au=Ferecatu%2C+Marin&rft.au=Audebert%2C+Nicolas&rft.date=2022-04-10&rft.pub=IEEE&rft.eissn=1558-2612&rft.spage=1039&rft.epage=1044&rft_id=info:doi/10.1109%2FWCNC51071.2022.9771695&rft.externalDocID=9771695