Classification of Alzheimer Disease on Imaging Modalities with Deep CNNs Using Cross-Modal Transfer Learning
A recent imaging modality Diffusion Tensor Imaging completes information used from Structural MRI in studies of Alzheimer disease. A large number of recent studies has explored pathologic staging of Alzheimer disease using the Mean Diffusivity maps extracted from the Diffusion Tensor Imaging modalit...
Gespeichert in:
| Veröffentlicht in: | Proceedings / IEEE International Symposium on Computer-Based Medical Systems S. 345 - 350 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2018
|
| Schlagworte: | |
| ISSN: | 2372-9198 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A recent imaging modality Diffusion Tensor Imaging completes information used from Structural MRI in studies of Alzheimer disease. A large number of recent studies has explored pathologic staging of Alzheimer disease using the Mean Diffusivity maps extracted from the Diffusion Tensor Imaging modality. The Deep Neural Networks are seducing tools for classification of subjects' imaging data in computer-aided diagnosis of Alzheimer's disease. The major problem here is the lack of a publicly available large amount of training data in both modalities. The lack number of training data yields over-fitting phenomena. We propose a method of a cross-modal transfer learning: from Structural MRI to Diffusion Tensor Imaging modality. Models pre-trained on a structural MRI dataset with domain-depended data augmentation are used as initialization of network parameters to train on Mean Diffusivity data. The method shows a reduction of the over-fitting phenomena, improves learning performance, and thus increases the accuracy of prediction. Classifiers are then fused by a majority vote resulting in augmented scores of classification between Normal Control, Alzheimer Patients and Mild Cognitive Impairment subjects on a subset of ADNI dataset. |
|---|---|
| AbstractList | A recent imaging modality Diffusion Tensor Imaging completes information used from Structural MRI in studies of Alzheimer disease. A large number of recent studies has explored pathologic staging of Alzheimer disease using the Mean Diffusivity maps extracted from the Diffusion Tensor Imaging modality. The Deep Neural Networks are seducing tools for classification of subjects' imaging data in computer-aided diagnosis of Alzheimer's disease. The major problem here is the lack of a publicly available large amount of training data in both modalities. The lack number of training data yields over-fitting phenomena. We propose a method of a cross-modal transfer learning: from Structural MRI to Diffusion Tensor Imaging modality. Models pre-trained on a structural MRI dataset with domain-depended data augmentation are used as initialization of network parameters to train on Mean Diffusivity data. The method shows a reduction of the over-fitting phenomena, improves learning performance, and thus increases the accuracy of prediction. Classifiers are then fused by a majority vote resulting in augmented scores of classification between Normal Control, Alzheimer Patients and Mild Cognitive Impairment subjects on a subset of ADNI dataset. |
| Author | Aderghal, Karim Krylov, Andrei Benois-Pineau, Jenny Afdel, Karim Catheline, Gwenaelle Khvostikov, Alexander |
| Author_xml | – sequence: 1 givenname: Karim surname: Aderghal fullname: Aderghal, Karim – sequence: 2 givenname: Alexander surname: Khvostikov fullname: Khvostikov, Alexander – sequence: 3 givenname: Andrei surname: Krylov fullname: Krylov, Andrei – sequence: 4 givenname: Jenny surname: Benois-Pineau fullname: Benois-Pineau, Jenny – sequence: 5 givenname: Karim surname: Afdel fullname: Afdel, Karim – sequence: 6 givenname: Gwenaelle surname: Catheline fullname: Catheline, Gwenaelle |
| BookMark | eNotjEtPwkAURkejiYCsXbiZP1C8M7cz7Syx-CABXIhrMrR3YExpSW8To79efKy-5DsnZygumrYhIW4UTJQCd1fcL18nGlQ-AQCbnYmxy3JlMLcWLGTnYqAx04lTLr8SQ-Z3AIPKmIGoi9ozxxBL38e2kW2Q0_prT_FAnZxFJs8kT__84Hex2cllW_k69pFYfsR-L2dER1msVizf-IcXXcuc_Fpy3fmGw6mzIN81J3otLoOvmcb_OxLrx4d18ZwsXp7mxXSR7DW4PjGlcZVLyXost4AEGn1Al5mAhFiickGDSclb2qItXaUqFypHKZIpXYojcfuXjUS0OXbx4LvPTZ6qTFuN3_gzWkc |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CBMS.2018.00067 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISBN | 9781538660607 1538660601 |
| EISSN | 2372-9198 |
| EndPage | 350 |
| ExternalDocumentID | 8417262 |
| Genre | orig-research |
| GroupedDBID | 29F 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-h209t-5c59d94e6a3cb03e023af3975f3e33c319f2054ea6eb36c9d1d9fd9e43e5c943 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518804700060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:48:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h209t-5c59d94e6a3cb03e023af3975f3e33c319f2054ea6eb36c9d1d9fd9e43e5c943 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8417262 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jun |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings / IEEE International Symposium on Computer-Based Medical Systems |
| PublicationTitleAbbrev | CBMS |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0053155 |
| Score | 2.4028318 |
| Snippet | A recent imaging modality Diffusion Tensor Imaging completes information used from Structural MRI in studies of Alzheimer disease. A large number of recent... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 345 |
| SubjectTerms | Alzheimer's disease Biomedical imaging Convolutional Neural Networks Deep Learning Diffusion tensor imaging Hippocampus Medical Imaging Mild Cognitive Impairment Multi-Modal Training Transfer Learning |
| Title | Classification of Alzheimer Disease on Imaging Modalities with Deep CNNs Using Cross-Modal Transfer Learning |
| URI | https://ieeexplore.ieee.org/document/8417262 |
| WOSCitedRecordID | wos000518804700060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKhRATjxZRXvLASGhSx7E9QkoFEo0q0aFb5dhnWqltqj4Y-PXYTihCYmGLnEi27mJ_d77v7hC6jZjMqaEsiHTCg9hV1uaywwNOEkPCnErQXtOvLMv4aCQGNXS3y4UBAE8-g3v36GP5ulBbd1XW5rGFW3fg7jHGylyt71PX_kqUVqV7olC008f-myNuOaZkmPzuneKho3f0v0mPUfMnBw8PduhygmqwOEUH_SoU3kAz387SEX28bHFh8MPscwLTOaxwtwy7YDv-Mvd9iHC_0M7kto4xdnevuAuwxGmWrbFnDeDUwWXgv8IewOwicFV99b2Jhr2nYfocVK0TgkknFJuAKiq0iCGRROUhAYvM0ljTgxoChCi770zHGmsgE-tMJ0roSAujBcQEqBIxOUP1RbGAc4QFkdZx5UYKu50Msy8ljXOmpIwZI9S0UMPJbLwsi2OMK3Fd_D18iQ6dUkqu1RWqb1ZbuEb76mMzXa9uvEa_AJiCoxk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaqgoCJR4t444GR0CS2k3iEQNWKJqpEh26V45xppbap-mDg12M7oQiJhS1yItm6i_3d-b67Q-jOC0XGFAsdLw8ih5rK2pHwIycigSJuxgTkVtO9ME2j4ZD3a-h-mwsDAJZ8Bg_m0cby80JuzFVZK6Iabs2Bu8Mo9b0yW-v73NU_E2NV8R7P5a34KXkz1C3DlXSD391TLHi0D_837RFq_mTh4f4WX45RDeYnaC-pguENNLUNLQ3Vx0oXFwo_Tj_HMJnBEj-XgResx7sz24kIJ0VujG7tGmNz-4qfARY4TtMVtrwBHBvAdOxX2EKYXgSu6q--N9Gg_TKIO07VPMEZ-y5fO0wynnMKgSAycwlobBZKGx9MESBE6p2nfG2ugQi0Ox1Inns5VzkHSoBJTskpqs-LOZwhzInQrmukBNcbSoX6pWA0C6UQNAwJU-eoYWQ2WpTlMUaVuC7-Hr5F-51B0hv1uunrJTowCiqZV1eovl5u4Brtyo_1ZLW8sdr9AkDTpmA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Symposium+on+Computer-Based+Medical+Systems&rft.atitle=Classification+of+Alzheimer+Disease+on+Imaging+Modalities+with+Deep+CNNs+Using+Cross-Modal+Transfer+Learning&rft.au=Aderghal%2C+Karim&rft.au=Khvostikov%2C+Alexander&rft.au=Krylov%2C+Andrei&rft.au=Benois-Pineau%2C+Jenny&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=2372-9198&rft.spage=345&rft.epage=350&rft_id=info:doi/10.1109%2FCBMS.2018.00067&rft.externalDocID=8417262 |