Classification of Alzheimer Disease on Imaging Modalities with Deep CNNs Using Cross-Modal Transfer Learning

A recent imaging modality Diffusion Tensor Imaging completes information used from Structural MRI in studies of Alzheimer disease. A large number of recent studies has explored pathologic staging of Alzheimer disease using the Mean Diffusivity maps extracted from the Diffusion Tensor Imaging modalit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings / IEEE International Symposium on Computer-Based Medical Systems S. 345 - 350
Hauptverfasser: Aderghal, Karim, Khvostikov, Alexander, Krylov, Andrei, Benois-Pineau, Jenny, Afdel, Karim, Catheline, Gwenaelle
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2018
Schlagworte:
ISSN:2372-9198
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A recent imaging modality Diffusion Tensor Imaging completes information used from Structural MRI in studies of Alzheimer disease. A large number of recent studies has explored pathologic staging of Alzheimer disease using the Mean Diffusivity maps extracted from the Diffusion Tensor Imaging modality. The Deep Neural Networks are seducing tools for classification of subjects' imaging data in computer-aided diagnosis of Alzheimer's disease. The major problem here is the lack of a publicly available large amount of training data in both modalities. The lack number of training data yields over-fitting phenomena. We propose a method of a cross-modal transfer learning: from Structural MRI to Diffusion Tensor Imaging modality. Models pre-trained on a structural MRI dataset with domain-depended data augmentation are used as initialization of network parameters to train on Mean Diffusivity data. The method shows a reduction of the over-fitting phenomena, improves learning performance, and thus increases the accuracy of prediction. Classifiers are then fused by a majority vote resulting in augmented scores of classification between Normal Control, Alzheimer Patients and Mild Cognitive Impairment subjects on a subset of ADNI dataset.
AbstractList A recent imaging modality Diffusion Tensor Imaging completes information used from Structural MRI in studies of Alzheimer disease. A large number of recent studies has explored pathologic staging of Alzheimer disease using the Mean Diffusivity maps extracted from the Diffusion Tensor Imaging modality. The Deep Neural Networks are seducing tools for classification of subjects' imaging data in computer-aided diagnosis of Alzheimer's disease. The major problem here is the lack of a publicly available large amount of training data in both modalities. The lack number of training data yields over-fitting phenomena. We propose a method of a cross-modal transfer learning: from Structural MRI to Diffusion Tensor Imaging modality. Models pre-trained on a structural MRI dataset with domain-depended data augmentation are used as initialization of network parameters to train on Mean Diffusivity data. The method shows a reduction of the over-fitting phenomena, improves learning performance, and thus increases the accuracy of prediction. Classifiers are then fused by a majority vote resulting in augmented scores of classification between Normal Control, Alzheimer Patients and Mild Cognitive Impairment subjects on a subset of ADNI dataset.
Author Aderghal, Karim
Krylov, Andrei
Benois-Pineau, Jenny
Afdel, Karim
Catheline, Gwenaelle
Khvostikov, Alexander
Author_xml – sequence: 1
  givenname: Karim
  surname: Aderghal
  fullname: Aderghal, Karim
– sequence: 2
  givenname: Alexander
  surname: Khvostikov
  fullname: Khvostikov, Alexander
– sequence: 3
  givenname: Andrei
  surname: Krylov
  fullname: Krylov, Andrei
– sequence: 4
  givenname: Jenny
  surname: Benois-Pineau
  fullname: Benois-Pineau, Jenny
– sequence: 5
  givenname: Karim
  surname: Afdel
  fullname: Afdel, Karim
– sequence: 6
  givenname: Gwenaelle
  surname: Catheline
  fullname: Catheline, Gwenaelle
BookMark eNotjEtPwkAURkejiYCsXbiZP1C8M7cz7Syx-CABXIhrMrR3YExpSW8To79efKy-5DsnZygumrYhIW4UTJQCd1fcL18nGlQ-AQCbnYmxy3JlMLcWLGTnYqAx04lTLr8SQ-Z3AIPKmIGoi9ozxxBL38e2kW2Q0_prT_FAnZxFJs8kT__84Hex2cllW_k69pFYfsR-L2dER1msVizf-IcXXcuc_Fpy3fmGw6mzIN81J3otLoOvmcb_OxLrx4d18ZwsXp7mxXSR7DW4PjGlcZVLyXost4AEGn1Al5mAhFiickGDSclb2qItXaUqFypHKZIpXYojcfuXjUS0OXbx4LvPTZ6qTFuN3_gzWkc
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CBMS.2018.00067
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9781538660607
1538660601
EISSN 2372-9198
EndPage 350
ExternalDocumentID 8417262
Genre orig-research
GroupedDBID 29F
6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-h209t-5c59d94e6a3cb03e023af3975f3e33c319f2054ea6eb36c9d1d9fd9e43e5c943
IEDL.DBID RIE
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518804700060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:48:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h209t-5c59d94e6a3cb03e023af3975f3e33c319f2054ea6eb36c9d1d9fd9e43e5c943
PageCount 6
ParticipantIDs ieee_primary_8417262
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Symposium on Computer-Based Medical Systems
PublicationTitleAbbrev CBMS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0053155
Score 2.4028318
Snippet A recent imaging modality Diffusion Tensor Imaging completes information used from Structural MRI in studies of Alzheimer disease. A large number of recent...
SourceID ieee
SourceType Publisher
StartPage 345
SubjectTerms Alzheimer's disease
Biomedical imaging
Convolutional Neural Networks
Deep Learning
Diffusion tensor imaging
Hippocampus
Medical Imaging
Mild Cognitive Impairment
Multi-Modal
Training
Transfer Learning
Title Classification of Alzheimer Disease on Imaging Modalities with Deep CNNs Using Cross-Modal Transfer Learning
URI https://ieeexplore.ieee.org/document/8417262
WOSCitedRecordID wos000518804700060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKhRATjxZRXvLASGhSx7E9QkoFEo0q0aFb5dhnWqltqj4Y-PXYTihCYmGLnEi27mJ_d77v7hC6jZjMqaEsiHTCg9hV1uaywwNOEkPCnErQXtOvLMv4aCQGNXS3y4UBAE8-g3v36GP5ulBbd1XW5rGFW3fg7jHGylyt71PX_kqUVqV7olC008f-myNuOaZkmPzuneKho3f0v0mPUfMnBw8PduhygmqwOEUH_SoU3kAz387SEX28bHFh8MPscwLTOaxwtwy7YDv-Mvd9iHC_0M7kto4xdnevuAuwxGmWrbFnDeDUwWXgv8IewOwicFV99b2Jhr2nYfocVK0TgkknFJuAKiq0iCGRROUhAYvM0ljTgxoChCi770zHGmsgE-tMJ0roSAujBcQEqBIxOUP1RbGAc4QFkdZx5UYKu50Msy8ljXOmpIwZI9S0UMPJbLwsi2OMK3Fd_D18iQ6dUkqu1RWqb1ZbuEb76mMzXa9uvEa_AJiCoxk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaqgoCJR4t444GR0CS2k3iEQNWKJqpEh26V45xppbap-mDg12M7oQiJhS1yItm6i_3d-b67Q-jOC0XGFAsdLw8ih5rK2pHwIycigSJuxgTkVtO9ME2j4ZD3a-h-mwsDAJZ8Bg_m0cby80JuzFVZK6Iabs2Bu8Mo9b0yW-v73NU_E2NV8R7P5a34KXkz1C3DlXSD391TLHi0D_837RFq_mTh4f4WX45RDeYnaC-pguENNLUNLQ3Vx0oXFwo_Tj_HMJnBEj-XgResx7sz24kIJ0VujG7tGmNz-4qfARY4TtMVtrwBHBvAdOxX2EKYXgSu6q--N9Gg_TKIO07VPMEZ-y5fO0wynnMKgSAycwlobBZKGx9MESBE6p2nfG2ugQi0Ox1Inns5VzkHSoBJTskpqs-LOZwhzInQrmukBNcbSoX6pWA0C6UQNAwJU-eoYWQ2WpTlMUaVuC7-Hr5F-51B0hv1uunrJTowCiqZV1eovl5u4Brtyo_1ZLW8sdr9AkDTpmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Symposium+on+Computer-Based+Medical+Systems&rft.atitle=Classification+of+Alzheimer+Disease+on+Imaging+Modalities+with+Deep+CNNs+Using+Cross-Modal+Transfer+Learning&rft.au=Aderghal%2C+Karim&rft.au=Khvostikov%2C+Alexander&rft.au=Krylov%2C+Andrei&rft.au=Benois-Pineau%2C+Jenny&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=2372-9198&rft.spage=345&rft.epage=350&rft_id=info:doi/10.1109%2FCBMS.2018.00067&rft.externalDocID=8417262