Learning with noisy supervision for Spoken Language Understanding

Data-driven spoken language understanding (SLU) systems need semantically annotated data which are expensive, time consuming and prone to human errors. Active learning has been successfully applied to automatic speech recognition and utterance classification. In general, corpora annotation for SLU i...

Full description

Saved in:
Bibliographic Details
Published in:2008 IEEE International Conference on Acoustics, Speech and Signal Processing pp. 4989 - 4992
Main Authors: Raymond, C., Riccardi, G.
Format: Conference Proceeding
Language:English
Published: IEEE 01.03.2008
Subjects:
ISBN:9781424414833, 1424414830
ISSN:1520-6149
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Data-driven spoken language understanding (SLU) systems need semantically annotated data which are expensive, time consuming and prone to human errors. Active learning has been successfully applied to automatic speech recognition and utterance classification. In general, corpora annotation for SLU involves such tasks as sentence segmentation, chunking or frame labeling and predicate-argument annotation. In such cases human annotations are subject to errors increasing with the annotation complexity. We investigate two alternative noise-robust active learning strategies that are either data-intensive or supervision-intensive. The strategies detect likely erroneous examples and improve significantly the SLU performance for a given labeling cost. We apply uncertainty based active learning with conditional random fields on the concept segmentation task for SLU. We perform annotation experiments on two databases, namely ATIS (English) and Media (French). We show that our noise-robust algorithm could improve the accuracy up to 6% (absolute) depending on the noise level and the labeling cost.
AbstractList Data-driven spoken language understanding (SLU) systems need semantically annotated data which are expensive, time consuming and prone to human errors. Active learning has been successfully applied to automatic speech recognition and utterance classification. In general, corpora annotation for SLU involves such tasks as sentence segmentation, chunking or frame labeling and predicate-argument annotation. In such cases human annotations are subject to errors increasing with the annotation complexity. We investigate two alternative noise-robust active learning strategies that are either data-intensive or supervision-intensive. The strategies detect likely erroneous examples and improve significantly the SLU performance for a given labeling cost. We apply uncertainty based active learning with conditional random fields on the concept segmentation task for SLU. We perform annotation experiments on two databases, namely ATIS (English) and Media (French). We show that our noise-robust algorithm could improve the accuracy up to 6% (absolute) depending on the noise level and the labeling cost.
Author Raymond, C.
Riccardi, G.
Author_xml – sequence: 1
  givenname: C.
  surname: Raymond
  fullname: Raymond, C.
  organization: L.I.A, Avignon Univ., Avignon
– sequence: 2
  givenname: G.
  surname: Riccardi
  fullname: Riccardi, G.
BookMark eNo1kN1Kw0AUhFesYFv7BL3ZF0jcsz9J9rIUtUJAIfa6nGxO2vVnE7Kt0rc3YJ2bYS6-YZgZm4QuEGNLECmAsPfP61VVvaZSiCLVBoo8L67YDLTUGnSh7TVb2Lz4z0pN2BSMFEkG2t6yRYzvYpQ2ylgzZauScAg-7PmPPx546Hw883jqafj20XeBt93Aq777oMBLDPsT7olvQ0NDPGJoRvCO3bT4GWlx8TnbPj68rTdJ-fI0bi2TgxT2mEgQCM4A1JYs1Q4RNRmHKqMmBw3OuTanutCNyciiFLI1SmSGstapFlHN2fKv1xPRrh_8Fw7n3eUB9Qt-KlC2
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP.2008.4518778
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1424414849
9781424414840
EndPage 4992
ExternalDocumentID 4518778
Genre orig-research
GroupedDBID 23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-h209t-210a1c511b9e9ebcaaa4e5ca36ed7141cccf7eb84d56e9a202f53065e6fc3faa3
IEDL.DBID RIE
ISBN 9781424414833
1424414830
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257456703231&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-6149
IngestDate Wed Aug 27 02:41:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-h209t-210a1c511b9e9ebcaaa4e5ca36ed7141cccf7eb84d56e9a202f53065e6fc3faa3
PageCount 4
ParticipantIDs ieee_primary_4518778
PublicationCentury 2000
PublicationDate 2008-March
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-March
PublicationDecade 2000
PublicationTitle 2008 IEEE International Conference on Acoustics, Speech and Signal Processing
PublicationTitleAbbrev ICASSP
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453595
ssj0008748
Score 1.679239
Snippet Data-driven spoken language understanding (SLU) systems need semantically annotated data which are expensive, time consuming and prone to human errors. Active...
SourceID ieee
SourceType Publisher
StartPage 4989
SubjectTerms Active Learning
Conditional Random Fields
Costs
Data mining
Humans
Labeling
Machine learning algorithms
Natural languages
Noise level
Noise robustness
Spoken Language Understanding
Uncertainty
Title Learning with noisy supervision for Spoken Language Understanding
URI https://ieeexplore.ieee.org/document/4518778
WOSCitedRecordID wos000257456703231&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwHA1zeNCLH5v4TQ4erWuaNB_HMRwKYwzmYLeRpr_oELqxD8H_3qSNdYIXb00vLQnk9_Ly3vshdOcwhw_A5FHu0GjEuCRRxkkeEWsJzRKwqS5XeiCGQzmdqlED3ddeGAAoxWfw4B_Lu_x8YbaeKuuwlEgh5B7aE4JXXq2aT3HQpPKYhl1YirJzlitP_njE1Lepy8F_Wmc9hTENcUQkVp3nXnc8HlUiy_C9X41XyrrTP_rfHx-j9o-BD4_q0nSCGlCcosOd7MEW6oZk1VfsqVhcLObrT7zeLv3e4Rk07NAsHi8X71DgQSA18WTXCtNGk_7jS-8pCv0UorckVpvIne40MQ5hZQqUF0FpzSA1mnLIBWHEGGMFZJLlKQelkzixqW8sD9waarWmZ6hZLAo4R9ihJgvAuPXZO6mlUjItrDAmzk2qaH6BWn4yZssqMmMW5uHy79dX6KCSYXhp1zVqblZbuEH75mMzX69uy3X-Aj0Iom0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zCuqLH5v4bR58tK5p0jZ9HMOxYR2DbbC3kaY3OoR27EPw35u0sU7wxbe2Ly0J5J57es65CN1rzGECMAMn1WjUYQEnThKQ1CFKEZp4oHxR7HQcDgZ8Oo2GNfRQeWEAoBCfwaO5LP7lp7ncGKqsxXzCw5DvoF2fMc8t3VoVo6LBSekytecwD4vZWbpAmQaJRd-2Lt0A0Crtyd5TG0hE3KjV77RHo2Eps7Rv_DV6pag83aP_ffMxav5Y-PCwKk4nqAbZKTrcSh9soLbNVn3FhozFWT5ffeLVZmFOD8OhYY1n8WiRv0OGY0tr4sm2GaaJJt2ncafn2IkKzpvnRmtH93eCSI2xkggiI4MSgoEvBQ0gDQkjUkoVQsJZ6gcQCc_1lG9Gy0OgJFVC0DNUz_IMzhHWuEkBsECZ9B1fUc6ZCFUopZtKP6LpBWqYxZgtytCMmV2Hy78f36H93vglnsX9wfMVOihFGUbodY3q6-UGbtCe_FjPV8vbYs-_AOUwpbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing&rft.atitle=Learning+with+noisy+supervision+for+Spoken+Language+Understanding&rft.au=Raymond%2C+C.&rft.au=Riccardi%2C+G.&rft.date=2008-03-01&rft.pub=IEEE&rft.isbn=9781424414833&rft.issn=1520-6149&rft.spage=4989&rft.epage=4992&rft_id=info:doi/10.1109%2FICASSP.2008.4518778&rft.externalDocID=4518778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon