Learning with noisy supervision for Spoken Language Understanding
Data-driven spoken language understanding (SLU) systems need semantically annotated data which are expensive, time consuming and prone to human errors. Active learning has been successfully applied to automatic speech recognition and utterance classification. In general, corpora annotation for SLU i...
Saved in:
| Published in: | 2008 IEEE International Conference on Acoustics, Speech and Signal Processing pp. 4989 - 4992 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.03.2008
|
| Subjects: | |
| ISBN: | 9781424414833, 1424414830 |
| ISSN: | 1520-6149 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Data-driven spoken language understanding (SLU) systems need semantically annotated data which are expensive, time consuming and prone to human errors. Active learning has been successfully applied to automatic speech recognition and utterance classification. In general, corpora annotation for SLU involves such tasks as sentence segmentation, chunking or frame labeling and predicate-argument annotation. In such cases human annotations are subject to errors increasing with the annotation complexity. We investigate two alternative noise-robust active learning strategies that are either data-intensive or supervision-intensive. The strategies detect likely erroneous examples and improve significantly the SLU performance for a given labeling cost. We apply uncertainty based active learning with conditional random fields on the concept segmentation task for SLU. We perform annotation experiments on two databases, namely ATIS (English) and Media (French). We show that our noise-robust algorithm could improve the accuracy up to 6% (absolute) depending on the noise level and the labeling cost. |
|---|---|
| AbstractList | Data-driven spoken language understanding (SLU) systems need semantically annotated data which are expensive, time consuming and prone to human errors. Active learning has been successfully applied to automatic speech recognition and utterance classification. In general, corpora annotation for SLU involves such tasks as sentence segmentation, chunking or frame labeling and predicate-argument annotation. In such cases human annotations are subject to errors increasing with the annotation complexity. We investigate two alternative noise-robust active learning strategies that are either data-intensive or supervision-intensive. The strategies detect likely erroneous examples and improve significantly the SLU performance for a given labeling cost. We apply uncertainty based active learning with conditional random fields on the concept segmentation task for SLU. We perform annotation experiments on two databases, namely ATIS (English) and Media (French). We show that our noise-robust algorithm could improve the accuracy up to 6% (absolute) depending on the noise level and the labeling cost. |
| Author | Raymond, C. Riccardi, G. |
| Author_xml | – sequence: 1 givenname: C. surname: Raymond fullname: Raymond, C. organization: L.I.A, Avignon Univ., Avignon – sequence: 2 givenname: G. surname: Riccardi fullname: Riccardi, G. |
| BookMark | eNo1kN1Kw0AUhFesYFv7BL3ZF0jcsz9J9rIUtUJAIfa6nGxO2vVnE7Kt0rc3YJ2bYS6-YZgZm4QuEGNLECmAsPfP61VVvaZSiCLVBoo8L67YDLTUGnSh7TVb2Lz4z0pN2BSMFEkG2t6yRYzvYpQ2ylgzZauScAg-7PmPPx546Hw883jqafj20XeBt93Aq777oMBLDPsT7olvQ0NDPGJoRvCO3bT4GWlx8TnbPj68rTdJ-fI0bi2TgxT2mEgQCM4A1JYs1Q4RNRmHKqMmBw3OuTanutCNyciiFLI1SmSGstapFlHN2fKv1xPRrh_8Fw7n3eUB9Qt-KlC2 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICASSP.2008.4518778 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1424414849 9781424414840 |
| EndPage | 4992 |
| ExternalDocumentID | 4518778 |
| Genre | orig-research |
| GroupedDBID | 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-h209t-210a1c511b9e9ebcaaa4e5ca36ed7141cccf7eb84d56e9a202f53065e6fc3faa3 |
| IEDL.DBID | RIE |
| ISBN | 9781424414833 1424414830 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257456703231&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-6149 |
| IngestDate | Wed Aug 27 02:41:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h209t-210a1c511b9e9ebcaaa4e5ca36ed7141cccf7eb84d56e9a202f53065e6fc3faa3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_4518778 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-March |
| PublicationDateYYYYMMDD | 2008-03-01 |
| PublicationDate_xml | – month: 03 year: 2008 text: 2008-March |
| PublicationDecade | 2000 |
| PublicationTitle | 2008 IEEE International Conference on Acoustics, Speech and Signal Processing |
| PublicationTitleAbbrev | ICASSP |
| PublicationYear | 2008 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000453595 ssj0008748 |
| Score | 1.679239 |
| Snippet | Data-driven spoken language understanding (SLU) systems need semantically annotated data which are expensive, time consuming and prone to human errors. Active... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 4989 |
| SubjectTerms | Active Learning Conditional Random Fields Costs Data mining Humans Labeling Machine learning algorithms Natural languages Noise level Noise robustness Spoken Language Understanding Uncertainty |
| Title | Learning with noisy supervision for Spoken Language Understanding |
| URI | https://ieeexplore.ieee.org/document/4518778 |
| WOSCitedRecordID | wos000257456703231&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwHA1zeNCLH5v4TQ4erWuaNB_HMRwKYwzmYLeRpr_oELqxD8H_3qSNdYIXb00vLQnk9_Ly3vshdOcwhw_A5FHu0GjEuCRRxkkeEWsJzRKwqS5XeiCGQzmdqlED3ddeGAAoxWfw4B_Lu_x8YbaeKuuwlEgh5B7aE4JXXq2aT3HQpPKYhl1YirJzlitP_njE1Lepy8F_Wmc9hTENcUQkVp3nXnc8HlUiy_C9X41XyrrTP_rfHx-j9o-BD4_q0nSCGlCcosOd7MEW6oZk1VfsqVhcLObrT7zeLv3e4Rk07NAsHi8X71DgQSA18WTXCtNGk_7jS-8pCv0UorckVpvIne40MQ5hZQqUF0FpzSA1mnLIBWHEGGMFZJLlKQelkzixqW8sD9waarWmZ6hZLAo4R9ihJgvAuPXZO6mlUjItrDAmzk2qaH6BWn4yZssqMmMW5uHy79dX6KCSYXhp1zVqblZbuEH75mMzX69uy3X-Aj0Iom0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zCuqLH5v4bR58tK5p0jZ9HMOxYR2DbbC3kaY3OoR27EPw35u0sU7wxbe2Ly0J5J57es65CN1rzGECMAMn1WjUYQEnThKQ1CFKEZp4oHxR7HQcDgZ8Oo2GNfRQeWEAoBCfwaO5LP7lp7ncGKqsxXzCw5DvoF2fMc8t3VoVo6LBSekytecwD4vZWbpAmQaJRd-2Lt0A0Crtyd5TG0hE3KjV77RHo2Eps7Rv_DV6pag83aP_ffMxav5Y-PCwKk4nqAbZKTrcSh9soLbNVn3FhozFWT5ffeLVZmFOD8OhYY1n8WiRv0OGY0tr4sm2GaaJJt2ncafn2IkKzpvnRmtH93eCSI2xkggiI4MSgoEvBQ0gDQkjUkoVQsJZ6gcQCc_1lG9Gy0OgJFVC0DNUz_IMzhHWuEkBsECZ9B1fUc6ZCFUopZtKP6LpBWqYxZgtytCMmV2Hy78f36H93vglnsX9wfMVOihFGUbodY3q6-UGbtCe_FjPV8vbYs-_AOUwpbQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing&rft.atitle=Learning+with+noisy+supervision+for+Spoken+Language+Understanding&rft.au=Raymond%2C+C.&rft.au=Riccardi%2C+G.&rft.date=2008-03-01&rft.pub=IEEE&rft.isbn=9781424414833&rft.issn=1520-6149&rft.spage=4989&rft.epage=4992&rft_id=info:doi/10.1109%2FICASSP.2008.4518778&rft.externalDocID=4518778 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6149&client=summon |

