Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration
Matching articulated shapes represented by voxel-sets reduces to maximal sub-graph isomorphism when each set is described by a weighted graph. Spectral graph theory can be used to map these graphs onto lower dimensional spaces and match shapes by aligning their embeddings in virtue of their invarian...
Saved in:
| Published in: | 2008 IEEE Conference on Computer Vision and Pattern Recognition pp. 1 - 8 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2008
|
| Subjects: | |
| ISBN: | 9781424422425, 1424422426 |
| ISSN: | 1063-6919, 1063-6919 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Matching articulated shapes represented by voxel-sets reduces to maximal sub-graph isomorphism when each set is described by a weighted graph. Spectral graph theory can be used to map these graphs onto lower dimensional spaces and match shapes by aligning their embeddings in virtue of their invariance to change of pose. Classical graph isomorphism schemes relying on the ordering of the eigenvalues to align the eigenspaces fail when handling large data-sets or noisy data. We derive a new formulation that finds the best alignment between two congruent K-dimensional sets of points by selecting the best subset of eigenfunctions of the Laplacian matrix. The selection is done by matching eigenfunction signatures built with histograms, and the retained set provides a smart initialization for the alignment problem with a considerable impact on the overall performance. Dense shape matching casted into graph matching reduces then, to point registration of embeddings under orthogonal transformations; the registration is solved using the framework of unsupervised clustering and the EM algorithm. Maximal subset matching of non identical shapes is handled by defining an appropriate outlier class. Experimental results on challenging examples show how the algorithm naturally treats changes of topology, shape variations and different sampling densities. |
|---|---|
| AbstractList | Matching articulated shapes represented by voxel-sets reduces to maximal sub-graph isomorphism when each set is described by a weighted graph. Spectral graph theory can be used to map these graphs onto lower dimensional spaces and match shapes by aligning their embeddings in virtue of their invariance to change of pose. Classical graph isomorphism schemes relying on the ordering of the eigenvalues to align the eigenspaces fail when handling large data-sets or noisy data. We derive a new formulation that finds the best alignment between two congruent K-dimensional sets of points by selecting the best subset of eigenfunctions of the Laplacian matrix. The selection is done by matching eigenfunction signatures built with histograms, and the retained set provides a smart initialization for the alignment problem with a considerable impact on the overall performance. Dense shape matching casted into graph matching reduces then, to point registration of embeddings under orthogonal transformations; the registration is solved using the framework of unsupervised clustering and the EM algorithm. Maximal subset matching of non identical shapes is handled by defining an appropriate outlier class. Experimental results on challenging examples show how the algorithm naturally treats changes of topology, shape variations and different sampling densities. |
| Author | Horaud, Radu Boyer, Edmond Cuzzolin, Fabio Mateus, Diana Knossow, David |
| Author_xml | – sequence: 1 givenname: Diana surname: Mateus fullname: Mateus, Diana email: diana.mateus@inrialpes.fr organization: INRIA Rhone-Alpes, 655 avenue de l'Europe- Montbonnot, 38 334 Saint Ismier Cedex France – sequence: 2 givenname: Radu surname: Horaud fullname: Horaud, Radu organization: INRIA Rhone-Alpes, 655 avenue de l'Europe- Montbonnot, 38 334 Saint Ismier Cedex France – sequence: 3 givenname: David surname: Knossow fullname: Knossow, David organization: INRIA Rhone-Alpes, 655 avenue de l'Europe- Montbonnot, 38 334 Saint Ismier Cedex France – sequence: 4 givenname: Fabio surname: Cuzzolin fullname: Cuzzolin, Fabio organization: INRIA Rhone-Alpes, 655 avenue de l'Europe- Montbonnot, 38 334 Saint Ismier Cedex France – sequence: 5 givenname: Edmond surname: Boyer fullname: Boyer, Edmond organization: INRIA Rhone-Alpes, 655 avenue de l'Europe- Montbonnot, 38 334 Saint Ismier Cedex France |
| BookMark | eNpVUE1LAzEUjFpBrf0B4iV_YGu-NpscS_ELCooUb1Jek5c20qbLJiv4722xB53DzGFmHo-5IoO0S0jIDWdjzpm9m76_vo0FY2asatPU0pyQkW0MV0IpIZQUp-SSMy0rbbk9--eJevDHuyCjnD_ZHqqWmutL8jHpSnT9Bgp6mtfQIt1CceuYVrTPB55BuwEXIVGMK0yhT67EXcoUkqd9yn2L3VfM-3q7i6nQDlcxlw4OoWtyHmCTcXTUIZk_3M-nT9Xs5fF5OplVa25FqUAj2Bp4ExrDeOOYV8Jwiw4N8xyU8daGZrkUxgevHHdah_3_qGVQgEwOye3v2YiIi7aLW-i-F8et5A_KL1zt |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2008.4587538 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 9781424422432 1424422434 |
| EISSN | 1063-6919 |
| EndPage | 8 |
| ExternalDocumentID | 4587538 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-h192t-a6ea95a17f78017c0d42819ece80d1a48d99f7bb28dfd4c1c66f536e63f4ae03 |
| IEDL.DBID | RIE |
| ISBN | 9781424422425 1424422426 |
| ISSN | 1063-6919 |
| IngestDate | Wed Aug 27 02:44:16 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h192t-a6ea95a17f78017c0d42819ece80d1a48d99f7bb28dfd4c1c66f536e63f4ae03 |
| OpenAccessLink | https://inria.hal.science/inria-00590251 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_4587538 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-06 |
| PublicationDateYYYYMMDD | 2008-06-01 |
| PublicationDate_xml | – month: 06 year: 2008 text: 2008-06 |
| PublicationDecade | 2000 |
| PublicationTitle | 2008 IEEE Conference on Computer Vision and Pattern Recognition |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2008 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000453616 ssj0023720 ssj0003211698 |
| Score | 2.1522505 |
| Snippet | Matching articulated shapes represented by voxel-sets reduces to maximal sub-graph isomorphism when each set is described by a weighted graph. Spectral graph... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Clustering algorithms Eigenvalues and eigenfunctions Fellows Graph theory Histograms Kernel Laplace equations Noise shaping Shape Topology |
| Title | Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration |
| URI | https://ieeexplore.ieee.org/document/4587538 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwEBZJ6NApbZPSNxo61o0fkmyNJTR0KCGUULKUIEvnJosTYru_vzr5UQpdulkHQkY6-z50391HyL2GSPNMRp6SAfPQQ7xEpqEX8hS7cQUs5caJTcTzebJayUWPPHS1MADgyGfwiI8ul292usKrsgnjiK6TPunHsahrtbr7FAtNItFAHRxHdiEhu4xCiGosLvMpIk_IQLZFXiHGqLb3UzPmTfoz8OVk-r54qymXzeq_ZFhcFJoN__f-J2T8U85HF12gOiU9yM_IsMGftPm6C2tqJR5a24h8PB1cdw6LSA0tNmoP1EJcx7-kSJn_pK8KaV3WyShgY0-Mk86VqcoNrfKi2uPfqLDT97ttXlJUgmh79Y7Jcva8nL54jSKDt7FIsPSUACW5CuIstpEt1r5hmIgDDYlvAsUSI2UWp2mYmMwwHWghMnssIKKMKfCjczLIdzlcEJql3M9MyBKlBfMhsdO4DiHQjKfKcHVJRrh_633dc2PdbN3V3-ZrclzzOPB25IYMykMFt-RIf5Xb4nDnHOUbjfm33Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7rA_S0PvFtDh6t9pGkzVHEZcV1WWQRL7KkydT10l22W3-_mWxaEbx4awZCaDLtfGS-mY-QKw2J5oVMAiUjFqCHBJnM4yDmOXbjiljOjRObSIfD7O1Njjrkuq2FAQBHPoMbfHS5fDPTNV6V3TKO6DpbIxuonOWrtdobFQtOEuHBDo4Tu5SQbU4hRj0Wl_sUSSBkJJsyrxijVNP9yY-5T4BGoby9fx29rEiXfv1fQiwuDvW6_3uDHXLwU9BHR22o2iUdKPdI1yNQ6r_vypoakYfGtk_e7xauP4fFpIZWUzUHakGuY2BSJM1_0IFCYpd1MwrY2hMjpXNmqkpD67Kq5_g_quz0-eyzXFLUgmi69R6Qce9hfN8PvCZDMLVYcBkoAUpyFaVFamNbqkPDMBUHGrLQRIplRsoizfM4M4VhOtJCFPZYQCQFUxAmh2S9nJVwRGiR87AwMcuUFiyEzE7jOoZIM54rw9Ux2cf9m8xXXTcmfutO_jZfkq3--HkwGTwOn07J9orVgXclZ2R9uajhnGzqr-VntbhwTvMNU0W7Jg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Articulated+shape+matching+using+Laplacian+eigenfunctions+and+unsupervised+point+registration&rft.au=Mateus%2C+Diana&rft.au=Horaud%2C+Radu&rft.au=Knossow%2C+David&rft.au=Cuzzolin%2C+Fabio&rft.date=2008-06-01&rft.pub=IEEE&rft.isbn=9781424422425&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2008.4587538&rft.externalDocID=4587538 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |

