Fixed-parameter algorithms for unsplittable flow cover

The Unsplittable Flow Cover problem (UFP-cover) models the well-studied general caching problem and various natural resource allocation settings. We are given a path with a demand on each edge and a set of tasks, each task being defined by a subpath and a size. The goal is to select a subset of the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theory of computing systems Ročník 154; s. 1 - 36
Hlavní autoři: Cristi, Andrés, Mari, Mathieu, Wiese, Andreas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Springer Verlag 01.03.2020
Témata:
ISSN:1432-4350, 1433-0490
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Unsplittable Flow Cover problem (UFP-cover) models the well-studied general caching problem and various natural resource allocation settings. We are given a path with a demand on each edge and a set of tasks, each task being defined by a subpath and a size. The goal is to select a subset of the tasks of minimum cardinality such that on each edge e the total size of the selected tasks using e is at least the demand of e. There is a polynomial time 4-approximation for the problem [Bar-Noy et al., STOC 2000] and also a QPTAS [Höhn et al., ICALP 2014]. In this paper we study fixed-parameter algorithms for the problem. We show that it is W[1]-hard but it becomes FPT if we can slightly violate the edge demands (resource augmentation) and also if there are at most k different task sizes. Then we present a parameterized approximation scheme (PAS), i.e., an algorithm with a running time of f (k) • n O (1) that outputs a solution with at most (1 +)k tasks or assert that there is no solution with at most k tasks. In this algorithm we use a new trick that intuitively allows us to pretend that we can select tasks from OP T multiple times. 2012 ACM Subject Classification Theory of computation → Packing and covering problems; Theory of computation → Fixed parameter tractability Keywords and phrases Unsplittable Flow Cover, fixed parameter algorithms, approximation algorithms Digital Object Identifier 10.4230/LIPIcs.STACS.2020.42
AbstractList The Unsplittable Flow Cover problem (UFP-cover) models the well-studied general caching problem and various natural resource allocation settings. We are given a path with a demand on each edge and a set of tasks, each task being defined by a subpath and a size. The goal is to select a subset of the tasks of minimum cardinality such that on each edge e the total size of the selected tasks using e is at least the demand of e. There is a polynomial time 4-approximation for the problem [Bar-Noy et al., STOC 2000] and also a QPTAS [Höhn et al., ICALP 2014]. In this paper we study fixed-parameter algorithms for the problem. We show that it is W[1]-hard but it becomes FPT if we can slightly violate the edge demands (resource augmentation) and also if there are at most k different task sizes. Then we present a parameterized approximation scheme (PAS), i.e., an algorithm with a running time of f (k) • n O (1) that outputs a solution with at most (1 +)k tasks or assert that there is no solution with at most k tasks. In this algorithm we use a new trick that intuitively allows us to pretend that we can select tasks from OP T multiple times. 2012 ACM Subject Classification Theory of computation → Packing and covering problems; Theory of computation → Fixed parameter tractability Keywords and phrases Unsplittable Flow Cover, fixed parameter algorithms, approximation algorithms Digital Object Identifier 10.4230/LIPIcs.STACS.2020.42
Author Wiese, Andreas
Cristi, Andrés
Mari, Mathieu
Author_xml – sequence: 1
  givenname: Andrés
  surname: Cristi
  fullname: Cristi, Andrés
  organization: Universidad de Chile = University of Chile [Santiago]
– sequence: 2
  givenname: Mathieu
  surname: Mari
  fullname: Mari, Mathieu
  organization: École normale supérieure - Paris
– sequence: 3
  givenname: Andreas
  surname: Wiese
  fullname: Wiese, Andreas
  organization: Universidad de Chile = University of Chile [Santiago]
BackLink https://hal.science/hal-03587595$$DView record in HAL
BookMark eNotjM1Og0AURiemJrbVN3DB1sXgnV9gSYi1JCSatK7JHRgEAwwZsOrba9XVd85ZfBuyGt1oCbllEEou4L7In_NqDg_HNDuEHPg5X5A1k0JQkAmsfplTKRRckc08vwGAiAHWRO-6T1vTCT0OdrE-wP7V-W5phzlonA_ex3nqu2VB09ug6d1HULmT9dfkssF-tjf_uyUvu4djtqfF02OepQVtWZwslNlESsswZqZRulaorARE9iMKuaoqoyMOUa24NiY2GhPRaCOV0dpgpRuxJXd_vy325eS7Af1X6bAr92lRnhsIFUcqUScmvgF4OE4H
ContentType Journal Article
Copyright Attribution
Copyright_xml – notice: Attribution
DBID 1XC
VOOES
DOI 10.4230/LIPIcs.STACS.2020.42
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1433-0490
EndPage 36
ExternalDocumentID oai:HAL:hal-03587595v1
GroupedDBID --Z
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1XC
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M2P
M4Y
M7S
MA-
MK~
ML~
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF-
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOOES
W23
W48
WH7
WK8
XOL
YLTOR
Z45
ZMTXR
~8M
ID FETCH-LOGICAL-h189t-1e944e1a81bf56d5a5e40aa1f565a25ccb67207d526bb8b6a93f6b45b66bac6f3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521377300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-4350
IngestDate Tue Oct 14 19:49:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords approximation al- gorithms
fixed parameter algorithms
Unsplittable Flow Cover
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-h189t-1e944e1a81bf56d5a5e40aa1f565a25ccb67207d526bb8b6a93f6b45b66bac6f3
OpenAccessLink https://hal.science/hal-03587595
PageCount 36
ParticipantIDs hal_primary_oai_HAL_hal_03587595v1
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Theory of computing systems
PublicationYear 2020
Publisher Springer Verlag
Publisher_xml – name: Springer Verlag
SSID ssj0003800
Score 2.179744
Snippet The Unsplittable Flow Cover problem (UFP-cover) models the well-studied general caching problem and various natural resource allocation settings. We are given...
SourceID hal
SourceType Open Access Repository
StartPage 1
SubjectTerms Computer Science
Title Fixed-parameter algorithms for unsplittable flow cover
URI https://hal.science/hal-03587595
Volume 154
WOSCitedRecordID wos000521377300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1433-0490
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003800
  issn: 1432-4350
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9owFLZQu8N22I9u09Z1UzTthsLixHbsI-qGQAOEBpt6i5zEKUgsVCRQzv3L-2yTEKodusMuVnAgcvweL--9fO97CH3BOJahpzwXZ6DBhOPA5ZISN-SKBFwpQrPUNJsIx2N-dSUmrdZdVQuzXYZ5znc7cfNfRQ1zIGxdOvsP4q4vChNwDEKHEcQO46ME31vsVOpqSu8_GurSlsvr1XpRzi3zQnuTF-B3lqUpmcqWq9t2olGcTSfV1utXgPONAUYXDWZz_crC2IYKEWnfttcnR9KWr480slFtDqkdZbs4GhClPEo4QHRZI66OEo7tRsLR2k4S6AIsyyPbUdUc_JjYjqC1waWkYTJx49lruVAeWnXw-DQMcjiYDJKiM511L6cdvbCO5eU6JtHud6fR5FsvGg7GP47PNpCH_e4Qxrlcwr1RiNgE3UIEferDkbaMP6e_66d5wE0ZU31ztvxSL-nr3xYELsq8SskbF2X2Ej3fxxZO1-rEK9RS-Rl6UfXtcPZm_Aw9G9VcvcVrxB4ojHNQGAcUxmkqjKMVxjEK8wb96n2fXfbdfTcNd465KF2sBCEKS4hTMspSKqkinpQYPlDp0ySJWeh7YUp9Fsc8ZlIEGYsJjRmLZcKy4C06yVe5eoecJOW-lAF4dkIQ5VHpZSKB_zqTGByikL9Hn2ETohvLlxJpBnPY8UjPHfb7_DFf-oCeHlTwAp2U6436iJ4k23JRrD8ZSd0Darhf2g
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fixed-parameter+algorithms+for+unsplittable+flow+cover&rft.jtitle=Theory+of+computing+systems&rft.au=Cristi%2C+Andr%C3%A9s&rft.au=Mari%2C+Mathieu&rft.au=Wiese%2C+Andreas&rft.date=2020-03-01&rft.pub=Springer+Verlag&rft.issn=1432-4350&rft.eissn=1433-0490&rft.volume=154&rft.spage=1&rft.epage=36&rft_id=info:doi/10.4230%2FLIPIcs.STACS.2020.42&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03587595v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-4350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-4350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-4350&client=summon