Feature selection combining genetic algorithm and Adaboost classifiers
This paper presents a fast method using simple genetic algorithms (GAs) for features selection. Unlike traditional approaches using GAs, we have used the combination of Adaboost classifiers to evaluate an individual of the population. So, the fitness function we have used is defined by the error rat...
Gespeichert in:
| Veröffentlicht in: | 2008 19th International Conference on Pattern Recognition S. 1 - 4 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.12.2008
|
| Schlagworte: | |
| ISBN: | 9781424421749, 1424421748 |
| ISSN: | 1051-4651 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper presents a fast method using simple genetic algorithms (GAs) for features selection. Unlike traditional approaches using GAs, we have used the combination of Adaboost classifiers to evaluate an individual of the population. So, the fitness function we have used is defined by the error rate of this combination. This approach has been implemented and tested on the MNIST database and the results confirm the effectiveness and the robustness of the proposed approach. |
|---|---|
| ISBN: | 9781424421749 1424421748 |
| ISSN: | 1051-4651 |
| DOI: | 10.1109/ICPR.2008.4761264 |

