Sketch ⋆-Metric: Comparing Data Streams via Sketching

In this paper, we consider the problem of estimating the distance between any two large data streams in small-space constraint. This problem is of utmost importance in data intensive monitoring applications where input streams are generated rapidly. These streams need to be processed on the fly and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2013 IEEE 12th International Symposium on Network Computing and Applications s. 25 - 32
Hlavní autoři: Anceaume, Emmanuelle, Busnel, Yann
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2013
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider the problem of estimating the distance between any two large data streams in small-space constraint. This problem is of utmost importance in data intensive monitoring applications where input streams are generated rapidly. These streams need to be processed on the fly and accurately to quickly determine any deviance from nominal behavior. We present a new metric, the Sketch ⋆-metric, which allows to define a distance between updatable summaries (or sketches) of large data streams. An important feature of the Sketch ⋆-metric is that, given a measure on the entire initial data streams, the Sketch ⋆-metric preserves the axioms of the latter measure on the sketch. Extensive experiments conducted on both synthetic traces and real data sets allow us to validate the robustness and accuracy of the Sketch ⋆-metric.
DOI:10.1109/NCA.2013.11