New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in $ Mathbb{R}^{n}
The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space...
Uloženo v:
| Hlavní autoři: | , , |
|---|---|
| Médium: | E-kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence
American Mathematical Society
2020
|
| Vydání: | 1 |
| Témata: | |
| ISBN: | 1470441616, 9781470441616 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Cover -- Title page -- Chapter 1. Introduction -- 1.1. A summary of the main results -- 1.2. Basic notions of minimal surface theory -- 1.3. Approximation and general position theorems -- 1.4. Complete non-orientable minimal surfaces with Jordan boundaries -- 1.5. Proper non-orientable minimal surfaces in domains in \Rⁿ -- Chapter 2. Preliminaries -- 2.1. Conformal structures on surfaces -- 2.2. \Igot-invariant functions and 1-forms. Spaces of functions and maps -- 2.3. Homology basis and period map -- 2.4. Conformal minimal immersions of non-orientable surfaces -- 2.5. Notation -- Chapter 3. Gluing \Igot-invariant sprays and applications -- 3.1. \Igot-invariant sprays -- 3.2. Gluing \Igot-invariant sprays on \Igot-invariant Cartan pairs -- 3.3. \Igot-invariant period dominating sprays -- 3.4. Banach manifold structure of the space \CMI_{\Igot}ⁿ(\Ncal) -- 3.5. Basic approximation results -- 3.6. The Riemann-Hilbert method for non-orientable minimal surfaces -- Chapter 4. Approximation theorems for non-orientable minimal surfaces -- 4.1. A Mergelyan approximation theorem -- 4.2. A Mergelyan theorem with fixed components -- Chapter 5. A general position theorem for non-orientable minimal surfaces -- Chapter 6. Applications -- 6.1. Proper non-orientable minimal surfaces in \Rⁿ -- 6.2. Complete non-orientable minimal surfaces with fixed components -- 6.3. Complete non-orientable minimal surfaces with Jordan boundaries -- 6.4. Proper non-orientable minimal surfaces in -convex domains -- Bibliography -- Back Cover

