New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in $ Mathbb{R}^{n}

The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Alarcón, Antonio, Forstnerič, Franc, López, Francisco J
Médium: E-kniha
Jazyk:angličtina
Vydáno: Providence American Mathematical Society 2020
Vydání:1
Témata:
ISBN:1470441616, 9781470441616
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to \mathbb{R}^n is a real analytic Banach manifold, obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces, and show general position theorems for non-orientable conformal minimal surfaces in \mathbb{R}^n. The authors also give the first known example of a properly embedded non-orientable minimal surface in \mathbb{R}^4; a Möbius strip. All the new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables the authors to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, they construct proper non-orientable conformal minimal surfaces in \mathbb{R}^n with any given conformal structure, complete non-orientable minimal surfaces in \mathbb{R}^n with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits n hyperplanes of \mathbb{CP}^{n-1} in general position, complete non-orientable minimal surfaces bounded by Jordan curves, and complete proper non-orientable minimal surfaces normalized by bordered surfaces in p-convex domains of \mathbb{R}^n.
AbstractList The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to \mathbb{R}^n is a real analytic Banach manifold, obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces, and show general position theorems for non-orientable conformal minimal surfaces in \mathbb{R}^n. The authors also give the first known example of a properly embedded non-orientable minimal surface in \mathbb{R}^4; a Möbius strip. All the new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables the authors to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, they construct proper non-orientable conformal minimal surfaces in \mathbb{R}^n with any given conformal structure, complete non-orientable minimal surfaces in \mathbb{R}^n with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits n hyperplanes of \mathbb{CP}^{n-1} in general position, complete non-orientable minimal surfaces bounded by Jordan curves, and complete proper non-orientable minimal surfaces normalized by bordered surfaces in p-convex domains of \mathbb{R}^n.
Author López, Francisco J
Forstnerič, Franc
Alarcón, Antonio
Author_xml – sequence: 1
  fullname: Alarcón, Antonio
– sequence: 2
  fullname: Forstnerič, Franc
– sequence: 3
  fullname: López, Francisco J
BookMark eNotjstKAzEYRiNe0Na-QxaCq4FJMrkt61Av0AvYri1J5g8zOE3qTIqW0ne3VFcfBw6Hb4CuQgxwgUZaKlLIvOCKUHGJBmcoiCDi5gSUslzznKlbNOr7xuZcKFmc5Du0nsM3LuNm28IPHgfT7lPj8AxSHaseNwGnGvAy7ao9jh7PY8gWXQMhGdsCnjWh2ZgWL3edNw7O_gOemVRbe3g_fhzC8R5de9P2MPrfIVo9T1blazZdvLyV42lWE05VZokjHkhhgQliqM3BCisrBlozYiTTuVeCSuK1dERV1FJHuKWc2cJXyrEhevzLbrv4tYM-rcHG-OlOTzvTridPpSCaa0HZL4MUV-g
ContentType eBook
DEWEY 516.3/62
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781470458126
1470458128
Edition 1
ExternalDocumentID EBC6195962
GroupedDBID 3.E
38.
AABBV
ABARN
ABQPQ
ACLGV
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
BBABE
BKSDG
CZZ
GEOUK
ID FETCH-LOGICAL-h1528-b1c1fe14be361a2b0eb6b7d3e9931a7390f86271f97c18d2b2c15b253b4fd8c3
ISBN 1470441616
9781470441616
IngestDate Wed Dec 10 12:19:15 EST 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QA644$b.A437 2020
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-h1528-b1c1fe14be361a2b0eb6b7d3e9931a7390f86271f97c18d2b2c15b253b4fd8c3
OCLC 1223095038
PQID EBC6195962
PageCount 90
ParticipantIDs proquest_ebookcentral_EBC6195962
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Providence
PublicationPlace_xml – name: Providence
PublicationYear 2020
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssib056874458
ssj0002325188
ssib041457589
Score 2.1400478
Snippet The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in...
SourceID proquest
SourceType Publisher
SubjectTerms Analytic subsets of affine space
Local analytic geometry [See also 13-XX and 14-XX]
Several complex variables and analytic spaces
TableOfContents Cover -- Title page -- Chapter 1. Introduction -- 1.1. A summary of the main results -- 1.2. Basic notions of minimal surface theory -- 1.3. Approximation and general position theorems -- 1.4. Complete non-orientable minimal surfaces with Jordan boundaries -- 1.5. Proper non-orientable minimal surfaces in domains in \Rⁿ -- Chapter 2. Preliminaries -- 2.1. Conformal structures on surfaces -- 2.2. \Igot-invariant functions and 1-forms. Spaces of functions and maps -- 2.3. Homology basis and period map -- 2.4. Conformal minimal immersions of non-orientable surfaces -- 2.5. Notation -- Chapter 3. Gluing \Igot-invariant sprays and applications -- 3.1. \Igot-invariant sprays -- 3.2. Gluing \Igot-invariant sprays on \Igot-invariant Cartan pairs -- 3.3. \Igot-invariant period dominating sprays -- 3.4. Banach manifold structure of the space \CMI_{\Igot}ⁿ(\Ncal) -- 3.5. Basic approximation results -- 3.6. The Riemann-Hilbert method for non-orientable minimal surfaces -- Chapter 4. Approximation theorems for non-orientable minimal surfaces -- 4.1. A Mergelyan approximation theorem -- 4.2. A Mergelyan theorem with fixed components -- Chapter 5. A general position theorem for non-orientable minimal surfaces -- Chapter 6. Applications -- 6.1. Proper non-orientable minimal surfaces in \Rⁿ -- 6.2. Complete non-orientable minimal surfaces with fixed components -- 6.3. Complete non-orientable minimal surfaces with Jordan boundaries -- 6.4. Proper non-orientable minimal surfaces in -convex domains -- Bibliography -- Back Cover
Title New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in $ Mathbb{R}^{n}
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6195962
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoywFOPMVbPnRPKFIcO3Fy3XYBCXaLyoJ6YuVX1EXgLLstWqnqf2cmsRNYDogDF8uJnCjJ54w_ezzfEHKYSydcLUVSKaBvotQ8UZy5xPLaWpMWlWyzNXx6J2ez8uyseh-y9G3adALS-3K7rVb_FWo4B2Bj6Ow_wN3fFE5AHUCHEmCHcocR94eDAhP-3l_dttMaQS3WaZshehO3M36IGtKzxicn6zYYEmOnpku__IbCIJfrOmzSgk4hXk6BIGo9kuPTkTwe5ROoeaj13QTmxQZ97WMepQjARjTD0Abc0mMwO1LW40iUTb8LqLt01a1ihxwfpgmuqrAWkaU7axGDk6mXnMUnb3pNk37iyoRMBc6til8tcdYJmu8IYE_GRwVK4IDVXn1PMF8Y-tVD8pQ9sicLsGwHrycnH99GSyKYABo66OjnBar8B__vl1bkJ0MlujbSLz5JFACLx3-Mzi3lmN8hBw7jUO6SG87fI7eHd93cJwuAmgaoaYSaBqjp0lNoS1uoaVPT36GmAWoaocb2h7QD-ur0-vOVv35A5q8m86M3SciUkZwD_yoTzQyrHRPa8YKpTKdOF1pa7oB9MiV5ldYwc5WsrqRhpc10Zlius5xrUdvS8Idk3zfePSLU5YU1uWbWobSdypQSSklrlcu5ZTJ9TGj8KIvWnR_2EC8GlJ78vclTcmvoPs_I_sX60j0nN82Pi-Vm_SKA-RM3pE_y
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=New+Complex+Analytic+Methods+in+the+Study+of+Non-Orientable+Minimal+Surfaces+in+%24+Mathbb%7BR%7D%5E%7Bn%7D&rft.au=Alarc%C3%B3n%2C+Antonio&rft.au=Forstneri%C4%8D%2C+Franc&rft.au=L%C3%B3pez%2C+Francisco+J&rft.date=2020-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470441616&rft.volume=264&rft.externalDocID=EBC6195962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781470441616/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781470441616/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781470441616/sc.gif&client=summon&freeimage=true