New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in $ Mathbb{R}^{n}
The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space...
Uloženo v:
| Hlavní autoři: | , , |
|---|---|
| Médium: | E-kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence
American Mathematical Society
2020
|
| Vydání: | 1 |
| Témata: | |
| ISBN: | 1470441616, 9781470441616 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to \mathbb{R}^n is a real analytic Banach manifold, obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces, and show general position theorems for non-orientable conformal minimal surfaces in \mathbb{R}^n. The authors also give the first known example of a properly embedded non-orientable minimal surface in \mathbb{R}^4; a Möbius strip. All the new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables the authors to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, they construct proper non-orientable conformal minimal surfaces in \mathbb{R}^n with any given conformal structure, complete non-orientable minimal surfaces in \mathbb{R}^n with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits n hyperplanes of \mathbb{CP}^{n-1} in general position, complete non-orientable minimal surfaces bounded by Jordan curves, and complete proper non-orientable minimal surfaces normalized by bordered surfaces in p-convex domains of \mathbb{R}^n. |
|---|---|
| AbstractList | The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in \mathbb{R}^n for any n\ge 3. These methods, which the authors develop essentially from the first principles, enable them to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to \mathbb{R}^n is a real analytic Banach manifold, obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces, and show general position theorems for non-orientable conformal minimal surfaces in \mathbb{R}^n. The authors also give the first known example of a properly embedded non-orientable minimal surface in \mathbb{R}^4; a Möbius strip. All the new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables the authors to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, they construct proper non-orientable conformal minimal surfaces in \mathbb{R}^n with any given conformal structure, complete non-orientable minimal surfaces in \mathbb{R}^n with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits n hyperplanes of \mathbb{CP}^{n-1} in general position, complete non-orientable minimal surfaces bounded by Jordan curves, and complete proper non-orientable minimal surfaces normalized by bordered surfaces in p-convex domains of \mathbb{R}^n. |
| Author | López, Francisco J Forstnerič, Franc Alarcón, Antonio |
| Author_xml | – sequence: 1 fullname: Alarcón, Antonio – sequence: 2 fullname: Forstnerič, Franc – sequence: 3 fullname: López, Francisco J |
| BookMark | eNotjstKAzEYRiNe0Na-QxaCq4FJMrkt61Av0AvYri1J5g8zOE3qTIqW0ne3VFcfBw6Hb4CuQgxwgUZaKlLIvOCKUHGJBmcoiCDi5gSUslzznKlbNOr7xuZcKFmc5Du0nsM3LuNm28IPHgfT7lPj8AxSHaseNwGnGvAy7ao9jh7PY8gWXQMhGdsCnjWh2ZgWL3edNw7O_gOemVRbe3g_fhzC8R5de9P2MPrfIVo9T1blazZdvLyV42lWE05VZokjHkhhgQliqM3BCisrBlozYiTTuVeCSuK1dERV1FJHuKWc2cJXyrEhevzLbrv4tYM-rcHG-OlOTzvTridPpSCaa0HZL4MUV-g |
| ContentType | eBook |
| DEWEY | 516.3/62 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781470458126 1470458128 |
| Edition | 1 |
| ExternalDocumentID | EBC6195962 |
| GroupedDBID | 3.E 38. AABBV ABARN ABQPQ ACLGV ADVEM AERYV AFOJC AHWGJ AJFER ALMA_UNASSIGNED_HOLDINGS BBABE BKSDG CZZ GEOUK |
| ID | FETCH-LOGICAL-h1528-b1c1fe14be361a2b0eb6b7d3e9931a7390f86271f97c18d2b2c15b253b4fd8c3 |
| ISBN | 1470441616 9781470441616 |
| IngestDate | Wed Dec 10 12:19:15 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum_Ident | QA644$b.A437 2020 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-h1528-b1c1fe14be361a2b0eb6b7d3e9931a7390f86271f97c18d2b2c15b253b4fd8c3 |
| OCLC | 1223095038 |
| PQID | EBC6195962 |
| PageCount | 90 |
| ParticipantIDs | proquest_ebookcentral_EBC6195962 |
| PublicationCentury | 2000 |
| PublicationDate | 2020 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Providence |
| PublicationPlace_xml | – name: Providence |
| PublicationYear | 2020 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssib056874458 ssj0002325188 ssib041457589 |
| Score | 2.1400478 |
| Snippet | The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in... |
| SourceID | proquest |
| SourceType | Publisher |
| SubjectTerms | Analytic subsets of affine space Local analytic geometry [See also 13-XX and 14-XX] Several complex variables and analytic spaces |
| TableOfContents | Cover -- Title page -- Chapter 1. Introduction -- 1.1. A summary of the main results -- 1.2. Basic notions of minimal surface theory -- 1.3. Approximation and general position theorems -- 1.4. Complete non-orientable minimal surfaces with Jordan boundaries -- 1.5. Proper non-orientable minimal surfaces in domains in \Rⁿ -- Chapter 2. Preliminaries -- 2.1. Conformal structures on surfaces -- 2.2. \Igot-invariant functions and 1-forms. Spaces of functions and maps -- 2.3. Homology basis and period map -- 2.4. Conformal minimal immersions of non-orientable surfaces -- 2.5. Notation -- Chapter 3. Gluing \Igot-invariant sprays and applications -- 3.1. \Igot-invariant sprays -- 3.2. Gluing \Igot-invariant sprays on \Igot-invariant Cartan pairs -- 3.3. \Igot-invariant period dominating sprays -- 3.4. Banach manifold structure of the space \CMI_{\Igot}ⁿ(\Ncal) -- 3.5. Basic approximation results -- 3.6. The Riemann-Hilbert method for non-orientable minimal surfaces -- Chapter 4. Approximation theorems for non-orientable minimal surfaces -- 4.1. A Mergelyan approximation theorem -- 4.2. A Mergelyan theorem with fixed components -- Chapter 5. A general position theorem for non-orientable minimal surfaces -- Chapter 6. Applications -- 6.1. Proper non-orientable minimal surfaces in \Rⁿ -- 6.2. Complete non-orientable minimal surfaces with fixed components -- 6.3. Complete non-orientable minimal surfaces with Jordan boundaries -- 6.4. Proper non-orientable minimal surfaces in -convex domains -- Bibliography -- Back Cover |
| Title | New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in $ Mathbb{R}^{n} |
| URI | https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6195962 |
| Volume | 264 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZoywFOPMVbPnRPKFIcO3Fy3XYBCXaLyoJ6YuVX1EXgLLstWqnqf2cmsRNYDogDF8uJnCjJ54w_ezzfEHKYSydcLUVSKaBvotQ8UZy5xPLaWpMWlWyzNXx6J2ez8uyseh-y9G3adALS-3K7rVb_FWo4B2Bj6Ow_wN3fFE5AHUCHEmCHcocR94eDAhP-3l_dttMaQS3WaZshehO3M36IGtKzxicn6zYYEmOnpku__IbCIJfrOmzSgk4hXk6BIGo9kuPTkTwe5ROoeaj13QTmxQZ97WMepQjARjTD0Abc0mMwO1LW40iUTb8LqLt01a1ihxwfpgmuqrAWkaU7axGDk6mXnMUnb3pNk37iyoRMBc6til8tcdYJmu8IYE_GRwVK4IDVXn1PMF8Y-tVD8pQ9sicLsGwHrycnH99GSyKYABo66OjnBar8B__vl1bkJ0MlujbSLz5JFACLx3-Mzi3lmN8hBw7jUO6SG87fI7eHd93cJwuAmgaoaYSaBqjp0lNoS1uoaVPT36GmAWoaocb2h7QD-ur0-vOVv35A5q8m86M3SciUkZwD_yoTzQyrHRPa8YKpTKdOF1pa7oB9MiV5ldYwc5WsrqRhpc10Zlius5xrUdvS8Idk3zfePSLU5YU1uWbWobSdypQSSklrlcu5ZTJ9TGj8KIvWnR_2EC8GlJ78vclTcmvoPs_I_sX60j0nN82Pi-Vm_SKA-RM3pE_y |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=New+Complex+Analytic+Methods+in+the+Study+of+Non-Orientable+Minimal+Surfaces+in+%24+Mathbb%7BR%7D%5E%7Bn%7D&rft.au=Alarc%C3%B3n%2C+Antonio&rft.au=Forstneri%C4%8D%2C+Franc&rft.au=L%C3%B3pez%2C+Francisco+J&rft.date=2020-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470441616&rft.volume=264&rft.externalDocID=EBC6195962 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781470441616/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781470441616/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781470441616/sc.gif&client=summon&freeimage=true |

