Simultaneous analysis of large INTEGRAL/SPI datasets: optimizing the computation of the solution and its variance using sparse matrix algorithms
Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase th...
Uložené v:
| Vydané v: | Astronomy and computing Ročník 1 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier
01.02.2013
|
| Predmet: | |
| ISSN: | 2213-1337 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase the low signal-to-noise ratio of the weakest sources. In this context, the conventional methods for data reduction are inefficient and sometimes not feasible at all. Processing several years of data simultaneously requires computing not only the solution of a large system of equations, but also the associated uncertainties. We aim at reducing the computation time and the memory usage. Since the SPI transfer function is sparse, we have used some popular methods for the solution of large sparse linear systems; we briefly review these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to compute the solution of the system of equations. We also need to compute the variance of the solution, which amounts to computing selected entries of the inverse of the sparse matrix corresponding to our linear system. This can be achieved through one of the latest features of the MUMPS software that has been partly motivated by this work. In this paper we provide a brief presentation of this feature and evaluate its effectiveness on astrophysical problems requiring the processing of large datasets simultaneously, such as the study of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising from SPI data processing and to obtain both their solutions and the associated variances. In conclusion, thanks to these newly developed tools, processing large datasets arising from SPI is now feasible with both a reasonable execution time and a low memory usage. |
|---|---|
| AbstractList | Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase the low signal-to-noise ratio of the weakest sources. In this context, the conventional methods for data reduction are inefficient and sometimes not feasible at all. Processing several years of data simultaneously requires computing not only the solution of a large system of equations, but also the associated uncertainties. We aim at reducing the computation time and the memory usage. Since the SPI transfer function is sparse, we have used some popular methods for the solution of large sparse linear systems; we briefly review these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to compute the solution of the system of equations. We also need to compute the variance of the solution, which amounts to computing selected entries of the inverse of the sparse matrix corresponding to our linear system. This can be achieved through one of the latest features of the MUMPS software that has been partly motivated by this work. In this paper we provide a brief presentation of this feature and evaluate its effectiveness on astrophysical problems requiring the processing of large datasets simultaneously, such as the study of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising from SPI data processing and to obtain both their solutions and the associated variances. In conclusion, thanks to these newly developed tools, processing large datasets arising from SPI is now feasible with both a reasonable execution time and a low memory usage. |
| Author | Amestoy, Patrick Rouet, François-Henry Buttari, Alfredo Bouchet, Laurent Chauvin, Maxime |
| Author_xml | – sequence: 1 givenname: Laurent surname: Bouchet fullname: Bouchet, Laurent organization: Institut de recherche en astrophysique et planétologie – sequence: 2 givenname: Patrick surname: Amestoy fullname: Amestoy, Patrick organization: Algorithmes Parallèles et Optimisation – sequence: 3 givenname: Alfredo orcidid: 0000-0003-3207-7021 surname: Buttari fullname: Buttari, Alfredo organization: Institut de recherche en astrophysique et planétologie – sequence: 4 givenname: François-Henry surname: Rouet fullname: Rouet, François-Henry organization: Institut de recherche en informatique de Toulouse – sequence: 5 givenname: Maxime surname: Chauvin fullname: Chauvin, Maxime organization: Institut de recherche en astrophysique et planétologie |
| BackLink | https://hal.science/hal-01125193$$DView record in HAL |
| BookMark | eNotTc1OwkAY3AMmIvIEXvbqoWW_3f56IwSBpFEjeG4-2i1d0u423S0Rn8JHFtTJJJOZZGbuyEgbLQl5AOYDg2h29NEWpvU5A-GzCxkfkTHnIDwQIr4lU2uP7II0gJAnY_K9Ve3QONTSDJaixuZslaWmog32B0k3L7vl6n2ezbZvG1qiQyudfaKmc6pVX0ofqKslvVx2g0OnjL5Wr5E1zfDrUZdUOUtP2CvUhaSDvdZsh72VtEXXq0-KzcH0ytWtvSc3FTZWTv91Qj6el7vF2steV5vFPPNqgNR5cSGSfVCle14KVlZJEUSR4FUiQh4Bq0LGAaMgjEUZi70ogwRjlnAoIlaVnGMpJuTxb7fGJu961WJ_zg2qfD3P8mvGAHgIqTiB-AFhDGxF |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 1XC VOOES |
| DOI | 10.1016/j.ascom.2013.03.002 |
| DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics Computer Science |
| ExternalDocumentID | oai:HAL:hal-01125193v1 |
| GroupedDBID | --M .~1 0R~ 1XC 1~. 4.4 457 4G. 7-5 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABNEU ABXDB ACDAQ ACFVG ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BKOJK BLXMC EBS EFJIC EFKBS EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ KOM M41 MO0 O-L O9- OAUVE OGIMB P-8 P-9 PC. Q38 ROL SDF SPC SPCBC SSQ SSV SSZ T5K VOOES ~G- ~HD |
| ID | FETCH-LOGICAL-h119t-7c38b4f9b2d30df8c46632f8352610f5021a64573d73b3d48a70821c60fd22ad3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000209385500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2213-1337 |
| IngestDate | Sat Oct 25 07:21:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Methods: Data Analysis Methods: Numerical Techniques: Imaging Spectroscopy Techniques: Miscellaneous Gamma-Rays: General |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-h119t-7c38b4f9b2d30df8c46632f8352610f5021a64573d73b3d48a70821c60fd22ad3 |
| ORCID | 0000-0003-3207-7021 |
| OpenAccessLink | https://hal.science/hal-01125193 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01125193v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-02 |
| PublicationDateYYYYMMDD | 2013-02-01 |
| PublicationDate_xml | – month: 02 year: 2013 text: 2013-02 |
| PublicationDecade | 2010 |
| PublicationTitle | Astronomy and computing |
| PublicationYear | 2013 |
| Publisher | Elsevier |
| Publisher_xml | – name: Elsevier |
| SSID | ssj0000941528 |
| Score | 1.8732377 |
| Snippet | Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The... |
| SourceID | hal |
| SourceType | Open Access Repository |
| SubjectTerms | Computer Science Distributed, Parallel, and Cluster Computing |
| Title | Simultaneous analysis of large INTEGRAL/SPI datasets: optimizing the computation of the solution and its variance using sparse matrix algorithms |
| URI | https://hal.science/hal-01125193 |
| Volume | 1 |
| WOSCitedRecordID | wos000209385500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2213-1337 databaseCode: AIEXJ dateStart: 20130201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000941528 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgcuPBbQwi7IQohLFWjjpE64RbBLC1VVsYvUW-S8tkFpssqjKvwK_hd_ihknTlLBYTlwqSI3da3OV_ubyTczhLziHvhcjDH4pxlcM3xua54wp5rPfWDXggV6IC294MultV7bq8Hgl8qF2SU8Ta393r75r6aGMTA2ps7-g7nbSWEArsHo8Apmh9dbGf4yRpGgSEMUt4pezZEERd8jrIH78YuzwEeoq_kIFaJFWEphXAbbxzb-oRKofNnwoaWUOKRW3j5y2IGrLZMOKhlzgO0pL1ASW-bxfiSS6yyPy01TEF3Vui0w-p5tv6uUOvgSdX5K3WIFOCpVznZPl-NssQtOHTqUjQW6JKOqLEWdMu8kEZZA7Z4jVfVcSNClKIBncaHJ1Ix-wAObTxyIR1QmTrdR6jrcBL42P9jV_3o-1KGKb29EgVohnL0ucat3x6GSAMycS3f14cJdzJefD9_tSRhnYC7mbEQCK0SqaLMduOJHOjdta0iOnPn5-lMb8gNPGtiS7JGoVqzqYEnF4R-LAr6zUfF9yXeuHpB7jaNCnRpgD8kgTI_JSWs8-prK6zoyVhyT-6o_CG2Oi0fkZx-KVEGRZhGVUKQKim8BiFQB8R3tYEgBc7QHQ_woDikYwpwBBRhSBUMqYUhrGNIahrSD4WPy9eL86v1MazqAaJvJxC417jPLMyLb0wM2DiLLN4Ag6xF6DUD7IxMIqpgaJmcBZx4LDEtwoLQTfzqOAl0XAXtChmmWhieETsJwHAIZntoiMEyLg2fhCeF7HjAP32TGU_ISfmv3pq7x4mLVdTCui2OdaZ_d5qZTcreD7RkZlnkVPid3_F0ZF_mLBhS_AVPjo68 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+analysis+of+large+INTEGRAL%2FSPI+datasets%3A+optimizing+the+computation+of+the+solution+and+its+variance+using+sparse+matrix+algorithms&rft.jtitle=Astronomy+and+computing&rft.au=Bouchet%2C+Laurent&rft.au=Amestoy%2C+Patrick&rft.au=Buttari%2C+Alfredo&rft.au=Rouet%2C+Fran%C3%A7ois-Henry&rft.date=2013-02-01&rft.pub=Elsevier&rft.issn=2213-1337&rft.volume=1&rft_id=info:doi/10.1016%2Fj.ascom.2013.03.002&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01125193v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-1337&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-1337&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-1337&client=summon |