Simultaneous analysis of large INTEGRAL/SPI datasets: optimizing the computation of the solution and its variance using sparse matrix algorithms

Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Astronomy and computing Ročník 1
Hlavní autori: Bouchet, Laurent, Amestoy, Patrick, Buttari, Alfredo, Rouet, François-Henry, Chauvin, Maxime
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier 01.02.2013
Predmet:
ISSN:2213-1337
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase the low signal-to-noise ratio of the weakest sources. In this context, the conventional methods for data reduction are inefficient and sometimes not feasible at all. Processing several years of data simultaneously requires computing not only the solution of a large system of equations, but also the associated uncertainties. We aim at reducing the computation time and the memory usage. Since the SPI transfer function is sparse, we have used some popular methods for the solution of large sparse linear systems; we briefly review these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to compute the solution of the system of equations. We also need to compute the variance of the solution, which amounts to computing selected entries of the inverse of the sparse matrix corresponding to our linear system. This can be achieved through one of the latest features of the MUMPS software that has been partly motivated by this work. In this paper we provide a brief presentation of this feature and evaluate its effectiveness on astrophysical problems requiring the processing of large datasets simultaneously, such as the study of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising from SPI data processing and to obtain both their solutions and the associated variances. In conclusion, thanks to these newly developed tools, processing large datasets arising from SPI is now feasible with both a reasonable execution time and a low memory usage.
AbstractList Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase the low signal-to-noise ratio of the weakest sources. In this context, the conventional methods for data reduction are inefficient and sometimes not feasible at all. Processing several years of data simultaneously requires computing not only the solution of a large system of equations, but also the associated uncertainties. We aim at reducing the computation time and the memory usage. Since the SPI transfer function is sparse, we have used some popular methods for the solution of large sparse linear systems; we briefly review these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to compute the solution of the system of equations. We also need to compute the variance of the solution, which amounts to computing selected entries of the inverse of the sparse matrix corresponding to our linear system. This can be achieved through one of the latest features of the MUMPS software that has been partly motivated by this work. In this paper we provide a brief presentation of this feature and evaluate its effectiveness on astrophysical problems requiring the processing of large datasets simultaneously, such as the study of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising from SPI data processing and to obtain both their solutions and the associated variances. In conclusion, thanks to these newly developed tools, processing large datasets arising from SPI is now feasible with both a reasonable execution time and a low memory usage.
Author Amestoy, Patrick
Rouet, François-Henry
Buttari, Alfredo
Bouchet, Laurent
Chauvin, Maxime
Author_xml – sequence: 1
  givenname: Laurent
  surname: Bouchet
  fullname: Bouchet, Laurent
  organization: Institut de recherche en astrophysique et planétologie
– sequence: 2
  givenname: Patrick
  surname: Amestoy
  fullname: Amestoy, Patrick
  organization: Algorithmes Parallèles et Optimisation
– sequence: 3
  givenname: Alfredo
  orcidid: 0000-0003-3207-7021
  surname: Buttari
  fullname: Buttari, Alfredo
  organization: Institut de recherche en astrophysique et planétologie
– sequence: 4
  givenname: François-Henry
  surname: Rouet
  fullname: Rouet, François-Henry
  organization: Institut de recherche en informatique de Toulouse
– sequence: 5
  givenname: Maxime
  surname: Chauvin
  fullname: Chauvin, Maxime
  organization: Institut de recherche en astrophysique et planétologie
BackLink https://hal.science/hal-01125193$$DView record in HAL
BookMark eNotTc1OwkAY3AMmIvIEXvbqoWW_3f56IwSBpFEjeG4-2i1d0u423S0Rn8JHFtTJJJOZZGbuyEgbLQl5AOYDg2h29NEWpvU5A-GzCxkfkTHnIDwQIr4lU2uP7II0gJAnY_K9Ve3QONTSDJaixuZslaWmog32B0k3L7vl6n2ezbZvG1qiQyudfaKmc6pVX0ofqKslvVx2g0OnjL5Wr5E1zfDrUZdUOUtP2CvUhaSDvdZsh72VtEXXq0-KzcH0ytWtvSc3FTZWTv91Qj6el7vF2steV5vFPPNqgNR5cSGSfVCle14KVlZJEUSR4FUiQh4Bq0LGAaMgjEUZi70ogwRjlnAoIlaVnGMpJuTxb7fGJu961WJ_zg2qfD3P8mvGAHgIqTiB-AFhDGxF
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 1XC
VOOES
DOI 10.1016/j.ascom.2013.03.002
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Computer Science
ExternalDocumentID oai:HAL:hal-01125193v1
GroupedDBID --M
.~1
0R~
1XC
1~.
4.4
457
4G.
7-5
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
KOM
M41
MO0
O-L
O9-
OAUVE
OGIMB
P-8
P-9
PC.
Q38
ROL
SDF
SPC
SPCBC
SSQ
SSV
SSZ
T5K
VOOES
~G-
~HD
ID FETCH-LOGICAL-h119t-7c38b4f9b2d30df8c46632f8352610f5021a64573d73b3d48a70821c60fd22ad3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000209385500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2213-1337
IngestDate Sat Oct 25 07:21:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Methods: Data Analysis
Methods: Numerical
Techniques: Imaging Spectroscopy
Techniques: Miscellaneous
Gamma-Rays: General
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-h119t-7c38b4f9b2d30df8c46632f8352610f5021a64573d73b3d48a70821c60fd22ad3
ORCID 0000-0003-3207-7021
OpenAccessLink https://hal.science/hal-01125193
ParticipantIDs hal_primary_oai_HAL_hal_01125193v1
PublicationCentury 2000
PublicationDate 2013-02
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02
PublicationDecade 2010
PublicationTitle Astronomy and computing
PublicationYear 2013
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0000941528
Score 1.8732377
Snippet Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The...
SourceID hal
SourceType Open Access Repository
SubjectTerms Computer Science
Distributed, Parallel, and Cluster Computing
Title Simultaneous analysis of large INTEGRAL/SPI datasets: optimizing the computation of the solution and its variance using sparse matrix algorithms
URI https://hal.science/hal-01125193
Volume 1
WOSCitedRecordID wos000209385500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2213-1337
  databaseCode: AIEXJ
  dateStart: 20130201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000941528
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgcuPBbQwi7IQohLFWjjpE64RbBLC1VVsYvUW-S8tkFpssqjKvwK_hd_ihknTlLBYTlwqSI3da3OV_ubyTczhLziHvhcjDH4pxlcM3xua54wp5rPfWDXggV6IC294MultV7bq8Hgl8qF2SU8Ta393r75r6aGMTA2ps7-g7nbSWEArsHo8Apmh9dbGf4yRpGgSEMUt4pezZEERd8jrIH78YuzwEeoq_kIFaJFWEphXAbbxzb-oRKofNnwoaWUOKRW3j5y2IGrLZMOKhlzgO0pL1ASW-bxfiSS6yyPy01TEF3Vui0w-p5tv6uUOvgSdX5K3WIFOCpVznZPl-NssQtOHTqUjQW6JKOqLEWdMu8kEZZA7Z4jVfVcSNClKIBncaHJ1Ix-wAObTxyIR1QmTrdR6jrcBL42P9jV_3o-1KGKb29EgVohnL0ucat3x6GSAMycS3f14cJdzJefD9_tSRhnYC7mbEQCK0SqaLMduOJHOjdta0iOnPn5-lMb8gNPGtiS7JGoVqzqYEnF4R-LAr6zUfF9yXeuHpB7jaNCnRpgD8kgTI_JSWs8-prK6zoyVhyT-6o_CG2Oi0fkZx-KVEGRZhGVUKQKim8BiFQB8R3tYEgBc7QHQ_woDikYwpwBBRhSBUMqYUhrGNIahrSD4WPy9eL86v1MazqAaJvJxC417jPLMyLb0wM2DiLLN4Ag6xF6DUD7IxMIqpgaJmcBZx4LDEtwoLQTfzqOAl0XAXtChmmWhieETsJwHAIZntoiMEyLg2fhCeF7HjAP32TGU_ISfmv3pq7x4mLVdTCui2OdaZ_d5qZTcreD7RkZlnkVPid3_F0ZF_mLBhS_AVPjo68
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+analysis+of+large+INTEGRAL%2FSPI+datasets%3A+optimizing+the+computation+of+the+solution+and+its+variance+using+sparse+matrix+algorithms&rft.jtitle=Astronomy+and+computing&rft.au=Bouchet%2C+Laurent&rft.au=Amestoy%2C+Patrick&rft.au=Buttari%2C+Alfredo&rft.au=Rouet%2C+Fran%C3%A7ois-Henry&rft.date=2013-02-01&rft.pub=Elsevier&rft.issn=2213-1337&rft.volume=1&rft_id=info:doi/10.1016%2Fj.ascom.2013.03.002&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01125193v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-1337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-1337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-1337&client=summon