SMG: a new simulation/optimization approach for large-scale problems

It typically can be difficult to create and solve optimization models for large-scale sequential decision problems, examples of which include applications such as communications networks, inventory problems, and portfolio selection problems. Monte Carlo simulation modeling allows for the creation an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Winter Simulation Conference, 1999 Ročník 1; s. 569 - 572 vol.1
Hlavní autori: Zobel, C.W., Scherer, W.T.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 1999
Predmet:
ISBN:0780357809, 9780780357808
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract It typically can be difficult to create and solve optimization models for large-scale sequential decision problems, examples of which include applications such as communications networks, inventory problems, and portfolio selection problems. Monte Carlo simulation modeling allows for the creation and evaluation of these large-scale models without requiring a complete analytical specification. Unfortunately, optimization of such simulation models is especially difficult given the large state spaces that often produce a combinatorially explosive number of potential solution policies. In this paper we introduce a new technique, Simulation for Model Generation (SMG), that begins with a simulation model of the system of interest and then automatically builds and solves an underlying stochastic sequential decision model of the system. Since construction and implementation of the created model requires approximation techniques, we also discuss several types of error that are induced into the decision process. Fortunately, the decision policies produced by the SMG approach can be directly evaluated in the original simulation model-thus the results of the SMG model can be compared against any other possible strategies, including any decision policies currently in use.
AbstractList It typically can be difficult to create and solve optimization models for large-scale sequential decision problems, examples of which include applications such as communications networks, inventory problems, and portfolio selection problems. Monte Carlo simulation modeling allows for the creation and evaluation of these large-scale models without requiring a complete analytical specification. Unfortunately, optimization of such simulation models is especially difficult given the large state spaces that often produce a combinatorially explosive number of potential solution policies. In this paper we introduce a new technique, Simulation for Model Generation (SMG), that begins with a simulation model of the system of interest and then automatically builds and solves an underlying stochastic sequential decision model of the system. Since construction and implementation of the created model requires approximation techniques, we also discuss several types of error that are induced into the decision process. Fortunately, the decision policies produced by the SMG approach can be directly evaluated in the original simulation model-thus the results of the SMG model can be compared against any other possible strategies, including any decision policies currently in use.
Author Scherer, W.T.
Zobel, C.W.
Author_xml – sequence: 1
  givenname: C.W.
  surname: Zobel
  fullname: Zobel, C.W.
  organization: Dept. of Manage. Sci. & Inf. Technol., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA
– sequence: 2
  givenname: W.T.
  surname: Scherer
  fullname: Scherer, W.T.
BookMark eNotj01LAzEYhAMqaGvPgqf8gd3mY7NJvMlqq1Dx0ILH8m7ypkb2i01F9Ne7WOcwwzOHgZmR867vkJAbznLOmV2-baucW2tzIySX6ozMmDZMqsnsJVmk9MEmKaaZ1lfkYfuyvqNAO_yiKbafDRxj3y374Rjb-PMHFIZh7MG909CPtIHxgFly0CCd6rrBNl2TiwBNwsV_zslu9birnrLN6_q5ut9kB21VJiQACM99ACgkIveqMF54UYiCAWjnpKmFEYUva-mUM2VA8CZYFkrgzss5uT3NRkTcD2NsYfzen27KXy6-Svw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/WSC.1999.823135
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 572 vol.1
ExternalDocumentID 823135
GroupedDBID 6IE
6IH
6IK
6IL
AAJGR
AAWTH
ACGHX
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
LHSKQ
OCL
RIB
RIC
RIE
RIL
RIO
ID FETCH-LOGICAL-g795-23aaa2d1dfaa43ee1d548d2d24240aa7cc38b2824d6b3c5c86fead8f90f6a1cd3
IEDL.DBID RIE
ISBN 0780357809
9780780357808
IngestDate Tue Aug 26 17:04:43 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g795-23aaa2d1dfaa43ee1d548d2d24240aa7cc38b2824d6b3c5c86fead8f90f6a1cd3
ParticipantIDs ieee_primary_823135
PublicationCentury 1900
PublicationDate 19990000
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – year: 1999
  text: 19990000
PublicationDecade 1990
PublicationTitle Winter Simulation Conference, 1999
PublicationTitleAbbrev WSC
PublicationYear 1999
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000507077
Score 1.2333372
Snippet It typically can be difficult to create and solve optimization models for large-scale sequential decision problems, examples of which include applications such...
SourceID ieee
SourceType Publisher
StartPage 569
SubjectTerms Communication networks
Explosives
Information management
Information technology
Large-scale systems
Modeling
Portfolios
State-space methods
Stochastic systems
Technology management
Title SMG: a new simulation/optimization approach for large-scale problems
URI https://ieeexplore.ieee.org/document/823135
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxFGyEePCEIsbv9OB1pd3ubluvKHqRkEAiN_Lo6xoSAcOCv9-2WzAmXry1PTRNP9I3r50ZQu4QpDLS8gSMgygZMzIBbvPEiAJzjVjotAxmE3IwUJOJHkad7cCFsdaGz2f23hfDWz6uzNanyrr-yUrkDdKQsqipWvt0Csu9bo0MwFwxL-HCdNTX2dVVVPbhTHffRj3P03P7JHT5y1ol3Cz91r_GdEw6Pww9OtzfPSfkwC7bpLWzaKDxxJ6Sx9Hr8wMF6oJnWs0X0avLIeXNfBEZmHQnK05d_Eo__M_wpHIrZ2k0m6k6ZNx_GvdekmickLxLnSepAIAUOZYAmbCWo4MlmKJngjAAaYxQMwe1MixmwuRGFaXbT6rUrCyAGxRnpLlcLe05oZkuueUclUxFhpmBwrgIkuUA6OpcX5C2n5LpZy2NMa1n4_LP1ityVGse-PzFNWlu1lt7Qw7N12ZerW_Dcn4DRvaeWg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxFGwUTfSEIsZve_C60m53t61XFDECIYFEbqT0dc0mAoYFf79tKRgTL97aHpqmH-mb184MQneguNDc0EhpC1ESonmkqEkjzTJIJUAm49ybTfBeT4xGsh90tj0XxhjjP5-Ze1f0b_kw1yuXKmu4JyuW7qI9Z5wVyFrbhApJnXIN99BcECfiQmRQ2NnURdD2oUQ23gZNx9SzO8V3-stcxd8treq_RnWE6j8cPdzf3j7HaMfMaqi6MWnA4cyeoMdB9_kBK2zDZ1wW0-DWZbHyspgGDibeCItjG8HiD_c3PCrt2hkc7GbKOhq2nobNdhSsE6J3LtMoZkqpGCjkSiXMGAoWmEAMjgtClOJaMzGxYCuBbMJ0qkWW2x0lcknyTFEN7BRVZvOZOUM4kTk1lILgMUsg0SrTNoYkqVJg61Seo5qbkvHnWhxjvJ6Niz9bb9FBe9jtjDsvvddLdLhWQHDZjCtUWS5W5hrt669lUS5u_NJ-A7l0oaM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Winter+Simulation+Conference%2C+1999&rft.atitle=SMG%3A+a+new+simulation%2Foptimization+approach+for+large-scale+problems&rft.au=Zobel%2C+C.W.&rft.au=Scherer%2C+W.T.&rft.date=1999-01-01&rft.pub=IEEE&rft.isbn=9780780357808&rft.volume=1&rft.spage=569&rft.epage=572+vol.1&rft_id=info:doi/10.1109%2FWSC.1999.823135&rft.externalDocID=823135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780357808/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780357808/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780357808/sc.gif&client=summon&freeimage=true