A multilayer improved RBM network based image compression method in wireless sensor networks

The processing capacity and power of nodes in a Wireless Sensor Network (WSN) are limited. And most image compression algorithms in WSN are subject to random image content changes or have low image qualities after the images are decoded. Therefore, an image compression method based on multilayer Res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of distributed sensor networks Jg. 2016
Hauptverfasser: Cheng, Chunling, Wang, Shu, Chen, Xingguo, Yang, Yanying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Sage Publications Ltd. (UK) 01.01.2016
Schlagworte:
ISSN:1550-1329
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The processing capacity and power of nodes in a Wireless Sensor Network (WSN) are limited. And most image compression algorithms in WSN are subject to random image content changes or have low image qualities after the images are decoded. Therefore, an image compression method based on multilayer Restricted Boltzmann Machine (RBM) network is proposed in this paper. The alternative iteration algorithm is also applied in RBM to optimize the training process. The proposed image compression method is compared with a region of interest (ROI) compression method in simulations. Under the same compression ratio, the qualities of reconstructed images are better than that of ROI. When the number of hidden units in top RBM layer is 8, the peak signal-to-noise ratio (PSNR) of the multilayer RBM network compression method is 74.2141, and it is much higher than that of ROI which is 60.2093. The multilayer RBM based image compression method has better compression performance and can effectively reduce the energy consumption during image transmission in WSN.
AbstractList The processing capacity and power of nodes in a Wireless Sensor Network (WSN) are limited. And most image compression algorithms in WSN are subject to random image content changes or have low image qualities after the images are decoded. Therefore, an image compression method based on multilayer Restricted Boltzmann Machine (RBM) network is proposed in this paper. The alternative iteration algorithm is also applied in RBM to optimize the training process. The proposed image compression method is compared with a region of interest (ROI) compression method in simulations. Under the same compression ratio, the qualities of reconstructed images are better than that of ROI. When the number of hidden units in top RBM layer is 8, the peak signal-to-noise ratio (PSNR) of the multilayer RBM network compression method is 74.2141, and it is much higher than that of ROI which is 60.2093. The multilayer RBM based image compression method has better compression performance and can effectively reduce the energy consumption during image transmission in WSN.
Audience Academic
Author Wang, Shu
Chen, Xingguo
Yang, Yanying
Cheng, Chunling
Author_xml – sequence: 1
  fullname: Cheng, Chunling
– sequence: 2
  fullname: Wang, Shu
– sequence: 3
  fullname: Chen, Xingguo
– sequence: 4
  fullname: Yang, Yanying
BookMark eNptkMFKAzEQhnOoYFs9-QIBz9sm2c0ke6xFrVARpEehJNnZGt1NZLNafHsDKniQOQx8__fPYWZkEmJAQi44WwQpl4JxWHItuRb1hEy5lKzgpahPySylF8ZKEMCn5GlF-_du9J35xIH6_m2IH9jQx6t7GnA8xuGVWpMy8b05IHUxG5iSj4H2OD7HHAR69AN2mdKEIcXht5nOyElruoTnP3tOdjfXu_Wm2D7c3q1X2-IACgpTlo1CAW1TgxBWV5VqoFUSAV2jtbaOOYEN1MYhthaV1cKWGpQyrAIryjm5_D57MB3ufWjjOBjX--T2K8nqCmomIVuLf6w8Dfbe5d-1PvM_hS8C1GUf
ContentType Journal Article
Copyright COPYRIGHT 2016 Sage Publications Ltd. (UK)
Copyright_xml – notice: COPYRIGHT 2016 Sage Publications Ltd. (UK)
DOI 10.n55/2016/1851829
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID A509469056
GroupedDBID .4S
.DC
0R~
29J
4.4
54M
5GY
5VS
8FE
8FG
AAJPV
AAKPC
ABAWP
ABJCF
ABQXT
ABUWG
ACGEJ
ACGFS
ACHEB
ACIWK
ACROE
ADBBV
ADMLS
ADXPE
AEDFJ
AENEX
AEWDL
AFCOW
AFFHD
AFKRA
AFKRG
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AUTPY
AYAKG
AZQEC
BCNDV
BDDNI
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
DU5
DWQXO
EBS
EDO
EJD
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
I-F
IAO
ICD
IEA
ITC
J8X
K.F
K6V
K7-
KQ8
L6V
M7S
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
ROL
SAUOL
SCNPE
SFC
TFW
TUS
TWF
TWQ
XH6
ID FETCH-LOGICAL-g676-a33d7e26fd9622b8447d6f75e6ecd888bc0c2ed69aceefbe7b82b38677a046b23
ISSN 1550-1329
IngestDate Sat Nov 29 13:07:04 EST 2025
Sun Nov 23 08:58:11 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g676-a33d7e26fd9622b8447d6f75e6ecd888bc0c2ed69aceefbe7b82b38677a046b23
ParticipantIDs gale_infotracmisc_A509469056
gale_infotracacademiconefile_A509469056
PublicationCentury 2000
PublicationDate 20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 20160101
  day: 01
PublicationDecade 2010
PublicationTitle International journal of distributed sensor networks
PublicationYear 2016
Publisher Sage Publications Ltd. (UK)
Publisher_xml – name: Sage Publications Ltd. (UK)
SSID ssj0036261
Score 2.0001044
Snippet The processing capacity and power of nodes in a Wireless Sensor Network (WSN) are limited. And most image compression algorithms in WSN are subject to random...
SourceID gale
SourceType Aggregation Database
SubjectTerms Algorithms
Analysis
Applied research
Data compression
Methods
Optimization theory
Wireless sensor networks
Title A multilayer improved RBM network based image compression method in wireless sensor networks
Volume 2016
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1550-1329
  databaseCode: DOA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0036261
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  issn: 1550-1329
  databaseCode: P5Z
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 20160131
  titleUrlDefault: https://search.proquest.com/hightechjournals
  omitProxy: false
  ssIdentifier: ssj0036261
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  issn: 1550-1329
  databaseCode: K7-
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 20160131
  titleUrlDefault: http://search.proquest.com/compscijour
  omitProxy: false
  ssIdentifier: ssj0036261
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  issn: 1550-1329
  databaseCode: M7S
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 20160131
  titleUrlDefault: http://search.proquest.com
  omitProxy: false
  ssIdentifier: ssj0036261
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  issn: 1550-1329
  databaseCode: CWDGH
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 20160131
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  omitProxy: false
  ssIdentifier: ssj0036261
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1550-1329
  databaseCode: BENPR
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 20160131
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: false
  ssIdentifier: ssj0036261
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  issn: 1550-1329
  databaseCode: PIMPY
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 20160131
  titleUrlDefault: http://search.proquest.com/publiccontent
  omitProxy: false
  ssIdentifier: ssj0036261
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoELb9RCqXxA4lCFZr2OH8elAnGAqkJ7WCGkKn5kW2nlRdmHyoXfzkxsd7Ooh3LgkkSOPZHyjWbGo5nPhLzlylSsEVXRmNIWvJFlYYxlhTVDB_5AWz003WET8uxMTaf6fDD4nXthNnMZgrq-1j__K9QwBmBj6-w_wH0jFAbgGUCHK8AO1zsBP45FgvMagmlsgmwXGwgqv334ehxiyfcxei4Hr7BcB0vKYylsSKdJYwYECYznaAOXsMtdtHnlsh_K7uYSewwUDrl48Rgt-Mht67tiAh9tzOnlGqk6Ztu8fkpfX677c3FoCtNm68WNmUoz4f4rC0jZi-Hf2Yt-YVKs_Puycu9jujmnQpJhrsoCds66b7lR4G1uIFRImMFSXgJiSpXW7TJrj5E8UGgIAe-R-0xWGq3iefU9e3Jk6ol8u-nbsb8TpJ-g7JMkOTnzXlgyeUIepf0EHUc9eEoGPjwjj_NZHTSZ7ufkx5hu1YJmtaCgFjSBQzu1oJ1a0J5a0KgW9CrQrBY0wppXLl-QyaePk9PPRTpZo5gJKYp6NHLSM9E4LRgzinPpRCMrL7x1SiljS8u8E7qGEKoxXhrFzAiZD-uSC8NGL8leWAS_Tyg3znHHrOXGc1HqGn4pcvpJcAVW1PUBeYc_5wLhWbW1rVPXB6xG4rGLLQYH5HBnJpg523v96s6CXpOHW007JHurdu3fkAd2s7patkdd0uWow_kPZS95lA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multilayer+improved+RBM+network+based+image+compression+method+in+wireless+sensor+networks&rft.jtitle=International+journal+of+distributed+sensor+networks&rft.au=Cheng%2C+Chunling&rft.au=Wang%2C+Shu&rft.au=Chen%2C+Xingguo&rft.au=Yang%2C+Yanying&rft.date=2016-01-01&rft.pub=Sage+Publications+Ltd.+%28UK%29&rft.issn=1550-1329&rft.volume=2016&rft_id=info:doi/10.n55%2F2016%2F1851829&rft.externalDocID=A509469056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-1329&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-1329&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-1329&client=summon