Computer vision and artificial intelligence for anomaly detection in photovoltaic panels/ Visao computacional e inteligencia artificial para a deteccao de anomalias em paineis fotovoltaicos/ Vision por computador e inteligencia artificial para la deteccion de anomalias en paneles fotovoltaicos
Power generation through photovoltaic technology has become an essential source of electricity in the world in recent years. In Brazil, it is already the second most immense installed power in the electrical matrix, and, as a result, anomalies in photovoltaic panels tend to become a source of losses...
Gespeichert in:
| Veröffentlicht in: | GeSec : Revista de Gestão e Secretariado Jg. 15; H. 12 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Portugiesisch |
| Veröffentlicht: |
Sindicato das Secretarias e Secretarios do Estado de Sao Paulo
01.12.2024
|
| Schlagworte: | |
| ISSN: | 2178-9010, 2178-9010 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Power generation through photovoltaic technology has become an essential source of electricity in the world in recent years. In Brazil, it is already the second most immense installed power in the electrical matrix, and, as a result, anomalies in photovoltaic panels tend to become a source of losses because they are elements exposed to the actions of nature. Techniques for detecting problems in panels have been studied, and among these, the use of thermographic images collected with the help of drones stands out. In this work, a solution is developed using computer vision and artificial intelligence techniques for detecting and classifying anomalies. It aims to assist operation and maintenance teams in deciding what type of intervention to carry out, thus optimizing their work and mitigating more significant losses. The average result of the Recall metric was over 95% accuracy, demonstrating the viability of its use for developing a solution for the photovoltaic system maintenance market. Keywords: Computer Vision. Convolutional Neural Network. Infrared Thermography. Operation and Maintenance. Photovoltaic Panel. A geracao de energia por meio de tecnologia fotovoltaica tornou-se uma importante fonte de eletricidade no mundo nos ultimos anos. No Brasil ja e a segunda maior potencia instalada na matriz eletrica e, com isso, anomalias nas placas fotovoltaicas tendem a se tornar fonte de perdas por serem elementos expostos as acoes da natureza. Tecnicas de deteccao de problemas nos paineis vem sendo estudadas e dentre essas, destaca-se o uso de imagens termograficas coletadas com auxilio de drones. No presente trabalho e desenvolvida a solucao utilizando visao computacional e tecnicas de inteligencia artificial para a deteccao e classificacao de anomalias, visando o auxilio as equipes de operacao e manutencao para a tomada de decisao sobre qual o tipo de intervencao a ser realizada, otimizando assim seu trabalho e mitigando maiores perdas no processo. O resultado medio da metrica Recall foi de mais de 95% de acerto, demonstrando a viabilidade de seu uso para o desenvolvimento de uma solucao para o mercado de manutencao de sistemas fotovoltaicos. Palavras-chave: Operacao e Manutencao. Paineis Fotovoltaicos. Redes Neurais Convolucionais. Termografia Infravermelha. Visao computacional. La generacion de energia mediante tecnologia fotovoltaica se ha convertido en los ultimos anos en una importante fuente de electricidad en el mundo. En Brasil, ya es la segunda potencia instalada en la matriz electrica y, como resultado, las anomalias en los paneles fotovoltaicos tienden a convertirse en fuente de perdidas por ser elementos expuestos a las acciones de la naturaleza. Se han estudiado tecnicas de deteccion de problemas en paneles y entre ellas destaca el uso de imagenes termicas recogidas con ayuda de drones. En este trabajo, la solucion se desarrolla utilizando tecnicas de vision computacional e inteligencia artificial para la deteccion y clasificacion de anomalias, con el objetivo de ayudar a los equipos de operacion y mantenimiento en la toma de decisiones sobre el tipo de intervencion a realizar, optimizando asi su trabajo y mitigando mayores perdidas en el proceso. El resultado promedio de la metrica Recall fue mas del 95% correcto, lo que demuestra la viabilidad de su uso para desarrollar una solucion para el mercado de mantenimiento de sistemas fotovoltaicos. Palabras clave: Operacion y Mantenimiento. Paneles Fotovoltaicos. Redes Neuronales Convolucionales. Termografia Infrarroja. Vision por Computador. |
|---|---|
| AbstractList | Power generation through photovoltaic technology has become an essential source of electricity in the world in recent years. In Brazil, it is already the second most immense installed power in the electrical matrix, and, as a result, anomalies in photovoltaic panels tend to become a source of losses because they are elements exposed to the actions of nature. Techniques for detecting problems in panels have been studied, and among these, the use of thermographic images collected with the help of drones stands out. In this work, a solution is developed using computer vision and artificial intelligence techniques for detecting and classifying anomalies. It aims to assist operation and maintenance teams in deciding what type of intervention to carry out, thus optimizing their work and mitigating more significant losses. The average result of the Recall metric was over 95% accuracy, demonstrating the viability of its use for developing a solution for the photovoltaic system maintenance market. Power generation through photovoltaic technology has become an essential source of electricity in the world in recent years. In Brazil, it is already the second most immense installed power in the electrical matrix, and, as a result, anomalies in photovoltaic panels tend to become a source of losses because they are elements exposed to the actions of nature. Techniques for detecting problems in panels have been studied, and among these, the use of thermographic images collected with the help of drones stands out. In this work, a solution is developed using computer vision and artificial intelligence techniques for detecting and classifying anomalies. It aims to assist operation and maintenance teams in deciding what type of intervention to carry out, thus optimizing their work and mitigating more significant losses. The average result of the Recall metric was over 95% accuracy, demonstrating the viability of its use for developing a solution for the photovoltaic system maintenance market. Keywords: Computer Vision. Convolutional Neural Network. Infrared Thermography. Operation and Maintenance. Photovoltaic Panel. A geracao de energia por meio de tecnologia fotovoltaica tornou-se uma importante fonte de eletricidade no mundo nos ultimos anos. No Brasil ja e a segunda maior potencia instalada na matriz eletrica e, com isso, anomalias nas placas fotovoltaicas tendem a se tornar fonte de perdas por serem elementos expostos as acoes da natureza. Tecnicas de deteccao de problemas nos paineis vem sendo estudadas e dentre essas, destaca-se o uso de imagens termograficas coletadas com auxilio de drones. No presente trabalho e desenvolvida a solucao utilizando visao computacional e tecnicas de inteligencia artificial para a deteccao e classificacao de anomalias, visando o auxilio as equipes de operacao e manutencao para a tomada de decisao sobre qual o tipo de intervencao a ser realizada, otimizando assim seu trabalho e mitigando maiores perdas no processo. O resultado medio da metrica Recall foi de mais de 95% de acerto, demonstrando a viabilidade de seu uso para o desenvolvimento de uma solucao para o mercado de manutencao de sistemas fotovoltaicos. Palavras-chave: Operacao e Manutencao. Paineis Fotovoltaicos. Redes Neurais Convolucionais. Termografia Infravermelha. Visao computacional. La generacion de energia mediante tecnologia fotovoltaica se ha convertido en los ultimos anos en una importante fuente de electricidad en el mundo. En Brasil, ya es la segunda potencia instalada en la matriz electrica y, como resultado, las anomalias en los paneles fotovoltaicos tienden a convertirse en fuente de perdidas por ser elementos expuestos a las acciones de la naturaleza. Se han estudiado tecnicas de deteccion de problemas en paneles y entre ellas destaca el uso de imagenes termicas recogidas con ayuda de drones. En este trabajo, la solucion se desarrolla utilizando tecnicas de vision computacional e inteligencia artificial para la deteccion y clasificacion de anomalias, con el objetivo de ayudar a los equipos de operacion y mantenimiento en la toma de decisiones sobre el tipo de intervencion a realizar, optimizando asi su trabajo y mitigando mayores perdidas en el proceso. El resultado promedio de la metrica Recall fue mas del 95% correcto, lo que demuestra la viabilidad de su uso para desarrollar una solucion para el mercado de mantenimiento de sistemas fotovoltaicos. Palabras clave: Operacion y Mantenimiento. Paneles Fotovoltaicos. Redes Neuronales Convolucionales. Termografia Infrarroja. Vision por Computador. |
| Audience | General |
| Author | Nichida, Cleiber Domingos, Jose Luis da Silveira, Carlos Roberto, Jr Cremon, Edipo Henrique Afonso, Renato, Jr Alves, Ricardo Henrique Gomes, Raphael Aquino |
| Author_xml | – sequence: 1 fullname: Nichida, Cleiber – sequence: 2 fullname: Domingos, Jose Luis – sequence: 3 fullname: da Silveira, Carlos Roberto, Jr – sequence: 4 fullname: Gomes, Raphael Aquino – sequence: 5 fullname: Alves, Ricardo Henrique – sequence: 6 fullname: Cremon, Edipo Henrique – sequence: 7 fullname: Afonso, Renato, Jr |
| BookMark | eNqFjltLAzEQhVep4PUH-BYQfGubpHvLoxRvUPCl-Cqz2UkdySbLZi347027VaoIJg-Zycw53zlNRs47TJJLwSdFkavpCgPqyVpkJOQkzQp-mJxIUZRjxQUf7dXHyUUIbzwepSSX4uTgeu6b9r3Hjq0pkHcMXM2g68mQJrCMXI_W0gqdRmZ8F-e-AfvBauxR9xsFOda--t6vve2BNGvBoQ1T9kwBPNNbf9BxM9rhYLj1I9gHtdDFfrDVUVfjDkUQGDZxTg4pxAzfJD9ANhnamGxHqmP5D8Z-cTbSnyA3xMdfoPPkyIANeLF7z5Ll3e1y_jBePN0_zm8W41VezMYSociLCrM0F9wornOo0ShVKlWhzNOsMkUtK5liKWZalAZlBVJCyo0xgDA7S64G2xVYfCEXM3SgGwr65aaUpeRZWs7i1uSPrXhrbGJYh4bi_57gE7AZtbk |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 Sindicato das Secretarias e Secretarios do Estado de Sao Paulo |
| Copyright_xml | – notice: COPYRIGHT 2024 Sindicato das Secretarias e Secretarios do Estado de Sao Paulo |
| DBID | INF |
| DOI | 10.7769/gesec.v15i12.4570 |
| DatabaseName | Gale OneFile: Informe Academico |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 2178-9010 |
| ExternalDocumentID | A828205483 |
| GroupedDBID | 5VS 7WY 8FL 91A ABDBF ABUWG ACUHS ADBBV AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BEZIV BPHCQ CCPQU CLZPN DWQXO EAD EAP EPL ESX FRNLG IAO INF K60 K6~ KQ8 M0C M~E OK1 PHGZM PHGZT PIMPY PQBIZ PQBZA PQQKQ PROAC |
| ID | FETCH-LOGICAL-g673-2ea767be54610f90c6adef99899be2645bf7d2b24e813c18fe2ba22a40fffaea3 |
| ISSN | 2178-9010 |
| IngestDate | Tue Nov 11 10:51:47 EST 2025 Tue Nov 04 18:11:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | Portuguese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-g673-2ea767be54610f90c6adef99899be2645bf7d2b24e813c18fe2ba22a40fffaea3 |
| ParticipantIDs | gale_infotracmisc_A828205483 gale_infotracacademiconefile_A828205483 |
| PublicationCentury | 2000 |
| PublicationDate | 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241201 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | GeSec : Revista de Gestão e Secretariado |
| PublicationYear | 2024 |
| Publisher | Sindicato das Secretarias e Secretarios do Estado de Sao Paulo |
| Publisher_xml | – name: Sindicato das Secretarias e Secretarios do Estado de Sao Paulo |
| SSID | ssj0000992021 |
| Score | 2.2755444 |
| Snippet | Power generation through photovoltaic technology has become an essential source of electricity in the world in recent years. In Brazil, it is already the... |
| SourceID | gale |
| SourceType | Aggregation Database |
| SubjectTerms | Artificial intelligence Computer organization Electric power production Machine vision |
| Title | Computer vision and artificial intelligence for anomaly detection in photovoltaic panels/ Visao computacional e inteligencia artificial para a deteccao de anomalias em paineis fotovoltaicos/ Vision por computador e inteligencia artificial para la deteccion de anomalias en paneles fotovoltaicos |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2178-9010 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000992021 issn: 2178-9010 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2178-9010 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000992021 issn: 2178-9010 databaseCode: 7WY dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2178-9010 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000992021 issn: 2178-9010 databaseCode: M0C dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Latin America & Iberia Database customDbUrl: eissn: 2178-9010 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000992021 issn: 2178-9010 databaseCode: CLZPN dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/latinamericaiberian providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2178-9010 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000992021 issn: 2178-9010 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2178-9010 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000992021 issn: 2178-9010 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEDZ9IMQF8RSFgnxAcIi23XWSTXKsqlKQSlWxVVVOlWNP2kjZeNlkV-Vf8ROZifPaUkE5cFlFefizd-aLx843NmPvhgl4w0QnyG8_GHgkIIzHQg4wNh66ro60rrbpPDsKjo_D8_PoZG39Z5MLs8yCPA-vr6PZfzU1nkNjU-rsP5i7LRRP4DEaHX_R7Ph7J8M3-zQ4Nm3crsY6ryRB1QYd_TU4rYTSTGX2w9FQgmqkj7MrUxp8c5UyVQ6-MLAHpfXNz9JCmkqGviilsrOIYIusSqQMrw6KlhV3pC1Y4XMaarBUFg5M8TqGuCktCNFimQaG6oFDgwZL08LkfwbKGiR6dBUqt02AG1D9wPwQJqAcKw9cUkxNRRxil1kpCVyD6BOKsEuJJtSm-5yjrlJdBeD7GZD6ph0ZmClGBab9zOIcLdJ2_KKlM0mzJaRzWatuMlPUKnf7Kawt59DUKSNf5YwSHJy974s0N_3ZGuHdUL5MSIigaFcfjc3v6l30W4GA2jgHBf251NgJWoh0oqbrG3AgGVbKGtuN33Ku6dz8PonFbZ1mEIxpzdlLKEDtLEd-OhI7nh8Muwih1W3u4fhcYJAfuutsUwR-hP3I5snnLyff2nlNHHFgu2meo62PFRMQzO5vIHUk1IvpTh-zR_VgjO9ZEj1ha7PyKXvQ5II8u_e-4RK3XOLIJd75He9ziSOXeM0l3nIJb-F9LnHLpV1eMYmvMIkD7zt4H4gcnEveMAkPeOveHKa8ZhJfce8KhOqAPOIdj_4GkzU49OgqUM5rHq0CPWenHw9O9z8N6o1VBpfjwB0IkME4iMGnvRaSaKjGUkMSRWEUxYADJD9OAi1i4UE4ctUoTEDEUgiJL_UkkSDdF2wjNzm8ZHysIwyyo1G135nyPJkkEGkp_Jh2tIqDLfaBzHtB_lbOpZJ10g8-TevOXXQOtcW2V-7EXk71Lr-6c0Gv2cOOeNtso5wv4A27r5ZlWszf1u76CwSQNKA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+vision+and+artificial+intelligence+for+anomaly+detection+in+photovoltaic+panels%2F+Visao+computacional+e+inteligencia+artificial+para+a+deteccao+de+anomalias+em+paineis+fotovoltaicos%2F+Vision+por+computador+e+inteligencia+artificial+para+la+deteccion+de+anomalias+en+paneles+fotovoltaicos&rft.jtitle=GeSec+%3A+Revista+de+Gest%C3%A3o+e+Secretariado&rft.au=Nichida%2C+Cleiber&rft.au=Domingos%2C+Jose+Luis&rft.au=da+Silveira%2C+Carlos+Roberto%2C+Jr&rft.au=Gomes%2C+Raphael+Aquino&rft.date=2024-12-01&rft.pub=Sindicato+das+Secretarias+e+Secretarios+do+Estado+de+Sao+Paulo&rft.issn=2178-9010&rft.eissn=2178-9010&rft.volume=15&rft.issue=12&rft_id=info:doi/10.7769%2Fgesec.v15i12.4570&rft.externalDocID=A828205483 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2178-9010&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2178-9010&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2178-9010&client=summon |