Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice

We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 194; H. 1-2; S. 85 - 119
Hauptverfasser: Maehara, Takanori, Nakashima, So, Yamaguchi, Yutaro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Heidelberg Springer 01.07.2022
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a ( [Formula omitted])-approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a median complex as a continuous relaxation of the distributive lattice and define the multilinear extension on it. We show that the median complex admits special curves, named uniform linear motions. The multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property used in the continuous greedy algorithm.
AbstractList We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a (1-1/e)-approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a median complex as a continuous relaxation of the distributive lattice and define the multilinear extension on it. We show that the median complex admits special curves, named uniform linear motions. The multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property used in the continuous greedy algorithm.
We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a ( [Formula omitted])-approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a median complex as a continuous relaxation of the distributive lattice and define the multilinear extension on it. We show that the median complex admits special curves, named uniform linear motions. The multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property used in the continuous greedy algorithm.
Audience Academic
Author Maehara, Takanori
Nakashima, So
Yamaguchi, Yutaro
Author_xml – sequence: 1
  fullname: Maehara, Takanori
– sequence: 2
  fullname: Nakashima, So
– sequence: 3
  fullname: Yamaguchi, Yutaro
BookMark eNotT01LAzEUDFLBtvoHPC14Tn3ZfO6xVK1CRZBePJXsblLS7iZ1kxXx1xupvIEHw8ybNzM08cEbhG4JLAiAvI8ECEgMJcFARAlYXqApYVRgJpiYoClAyTEXBK7QLMYDABCq1BR9vI5dcqfOFEevT1E3R9wEH9OgnTdt0QcfUo4qHt5xHOs-tGOnh6LX3653Pzq54IuM1mWHq8fkvkzR6ZRcY67RpdVdNDf_e462T4_b1TPevK1fVssN3gtJMFeMUgpWWiaosrwBYa0yigit2kpUdVUzWXPOjK64UG1ZUsU0rTjLDqIJnaO789nTED5HE9PuEMbB58RdKRRhlSDyT7U4q_a6MzvnbcgNmzyt6V0ubKzL_FKCYqpk-aVf_w9mXg
ContentType Journal Article
Copyright COPYRIGHT 2022 Springer
Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
Copyright_xml – notice: COPYRIGHT 2022 Springer
– notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021.
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-021-01620-7
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 119
ExternalDocumentID A708482443
GroupedDBID --Z
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
7WY
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZL0
ZMTXR
~02
~8M
~EX
7SC
8FD
AAYZH
AESKC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-g671-5843330f7f4638f5c06ff8e816a8d969b9b47b554ea9568d22384a39547f41a13
ISSN 0025-5610
IngestDate Thu Sep 25 00:39:30 EDT 2025
Sat Nov 29 10:25:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g671-5843330f7f4638f5c06ff8e816a8d969b9b47b554ea9568d22384a39547f41a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2681496171
PQPubID 25307
PageCount 35
ParticipantIDs proquest_journals_2681496171
gale_infotracacademiconefile_A708482443
PublicationCentury 2000
PublicationDate 20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 20220701
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Mathematical programming
PublicationYear 2022
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
SSID ssj0001388
Score 2.3525093
Snippet We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a...
SourceID proquest
gale
SourceType Aggregation Database
StartPage 85
SubjectTerms Algorithms
Constraints
Greedy algorithms
Lattices
Maximization
Optimization
Title Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice
URI https://www.proquest.com/docview/2681496171
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELbSpIf2UDV9qEnTikOkHiJLgL3YHKO0US6JqmQVpafV8HC62gLRson253fG2MD2IaWHSiu0gADDN8yMh5n5GDs01BSrMJLHAnIu0SShHoSCG0DjVuZZKWVmySbUxYW-uUm_uhKC1tIJqLrW63V691-hxm0INpXO_gPc_UlxA_5H0HGJsOPyUcCf-xTBRQ13LeQLnpMPSFQQ6FziMBrqv330-ZK3aAubwuahVrCeV64kk74fFNRP11JhPZRHP2DlU-S8H3ved3ulSq4ux6vyVtAGuEvqBG2lARZQN8t5H3bG9fb7vLI7r5pe7UAFt8TMYo3C_QqWzTgiEQ_Zq5sRybHajSecHLUNtduRG3v5ckWQnRrtWHx-0-6hr3aO6IoxxUESnP2qwZb1GYbHiogC0HcRT9hOrHDaRJGcq-veSkdCa0_nS0NzBVWurPKXC_zNXlsnZPqSvXCzh-C4Q32XbZX1K_Z81FMS1wZo2tfsm5eG4E_SEHhpCDakIRhLQ4C_sTQEThresOnpl-nJGXdsGvw2URFHR1MIERplJKpcM8nDxBhd6igBXaRJmqWZVBk6lyVQBWmBbqOWINKJxCMiiMRbtl3jgN6xYBLjHEFnaBljJXUU2k-xWhstMq20CffYJ3paM8IO7ycHV-mBR1OzsdmAzR478A905l6hdhYnGqft6FlH-48-0Xv2bJDEA7a9Wt6XH9jT_GE1b5cfLfI_AbgecQk
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+knapsack-constrained+monotone+DR-submodular+maximization+on+distributive+lattice&rft.jtitle=Mathematical+programming&rft.au=Maehara%2C+Takanori&rft.au=Nakashima%2C+So&rft.au=Yamaguchi%2C+Yutaro&rft.date=2022-07-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=194&rft.issue=1-2&rft.spage=85&rft_id=info:doi/10.1007%2Fs10107-021-01620-7&rft.externalDocID=A708482443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon