Performance Overhead of Lossless Data Compression and Decompression Algorithms: A Qualitative Fundamental Research Study

With the development of big data, the Internet of Things (IoT), and social media, the volume of data is being collected and stored exponentially. Some of the influx of the huge data storage also comes from sensors in automobiles, household appliances, medical equipment, and many other devices. Today...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Williams, David Michael
Médium: Dissertation
Jazyk:angličtina
Vydáno: ProQuest Dissertations & Theses 01.01.2022
Témata:
ISBN:9798837540622
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the development of big data, the Internet of Things (IoT), and social media, the volume of data is being collected and stored exponentially. Some of the influx of the huge data storage also comes from sensors in automobiles, household appliances, medical equipment, and many other devices. Today data collection is outgrowing the capability to store this vast amount of data. Therefore, there is a need to compress data to alleviate this data storage problem. Several different data compression algorithms use different methods of data compression. For example, Run Length Encoding (RLE) removes consecutive repeating strings and combines them by coding the string once with the number of occurrences. Several data compression algorithms, such as Huffman coding, rely on a dictionary representing characters or a string of characters with codewords that contains fewer bits. Unfortunately, these dictionaries are unique to a document, so the metadata must be passed to the decoder for decompression. This research develops a compression and decompression model that eliminates the overhead of the encoder having to create and maintain a dictionary and eliminates passing this metadata to the decoder. Compression is achieved by reducing the number of bits for each alphanumeric character from 8 bits to 6 bits. This compression method comes with some overhead in compressing non-alphanumeric characters; however, non-alphanumeric characters are used infrequently. This document shows a lossless 6-bit data compression model that provides up to 25% data compression. This data compression model could save businesses the cost of investing in data servers and cloud data storage.
AbstractList With the development of big data, the Internet of Things (IoT), and social media, the volume of data is being collected and stored exponentially. Some of the influx of the huge data storage also comes from sensors in automobiles, household appliances, medical equipment, and many other devices. Today data collection is outgrowing the capability to store this vast amount of data. Therefore, there is a need to compress data to alleviate this data storage problem. Several different data compression algorithms use different methods of data compression. For example, Run Length Encoding (RLE) removes consecutive repeating strings and combines them by coding the string once with the number of occurrences. Several data compression algorithms, such as Huffman coding, rely on a dictionary representing characters or a string of characters with codewords that contains fewer bits. Unfortunately, these dictionaries are unique to a document, so the metadata must be passed to the decoder for decompression. This research develops a compression and decompression model that eliminates the overhead of the encoder having to create and maintain a dictionary and eliminates passing this metadata to the decoder. Compression is achieved by reducing the number of bits for each alphanumeric character from 8 bits to 6 bits. This compression method comes with some overhead in compressing non-alphanumeric characters; however, non-alphanumeric characters are used infrequently. This document shows a lossless 6-bit data compression model that provides up to 25% data compression. This data compression model could save businesses the cost of investing in data servers and cloud data storage.
Author Williams, David Michael
Author_xml – sequence: 1
  givenname: David
  surname: Williams
  middlename: Michael
  fullname: Williams, David Michael
BookMark eNpNjc1KAzEYRQMqqLXvEHBdyOR34q60VoWCf92XbyZf2pGZpCaZom9vQReuLucszr0m5yEGPCNTa2xdC6Mk05xfkmnOXcMYs0Iwya_I1wsmH9MAoUX6fMS0R3A0erqOOfeYM11CAbqIwyGdqIuBQnB0ie0_M-93MXVlP-Q7OqevI_RdgdIdka7G4GDAUKCnb5gRUrun72V03zfkwkOfcfq3E7JZ3W8Wj7P188PTYr6e7TQXMwvKVUwKrqxUyOvKaSN5g8KA0-CgcaKtZQu1qnyj0VjQVisljTfWO8_EhNz-Zg8pfo6Yy_YjjimcHrfcMFVXgnEhfgAPJFxl
ContentType Dissertation
Copyright Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Copyright_xml – notice: Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
DBID 04Z
050
053
054
0BH
0IZ
AAFGM
ABUWG
ADZZV
AFKRA
AGAJT
AMEAF
AQTIP
AZQEC
BENPR
CBPLH
CCPQU
DWQXO
EU9
G20
M8-
P6D
PHGZM
PHGZT
PIMPY
PKEHL
PQCXX
PQEST
PQQKQ
PQUKI
PRINS
DatabaseName Dissertations & Theses Europe Full Text: Business
Dissertations & Theses Europe Full Text: Health & Medicine
Dissertations & Theses Europe Full Text: Science & Technology
Dissertations & Theses Europe Full Text: Social Sciences
ProQuest Dissertations and Theses Professional
Dissertations & Theses @ Northcentral University
ProQuest Central Korea - hybrid linking
ProQuest Central (Alumni)
ProQuest Central (Alumni) - hybrid linking
ProQuest Central UK/Ireland
ProQuest Central Essentials - hybrid linking
ProQuest Dissertations & Theses Global: The Humanities and Social Sciences Collection
ProQuest Women's & Gender Studies - hybrid linking
ProQuest Central Essentials
ProQuest Central
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest One
ProQuest Central Korea
ProQuest Dissertations & Theses A&I
ProQuest Dissertations & Theses Global
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
ProQuest Dissertations and Theses A&I: The Humanities and Social Sciences Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central - hybrid linking
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Dissertations & Theses: Open
ProQuest Central China
ProQuest Dissertations and Theses A&I: The Sciences and Engineering Collection
ProQuest Central
ProQuest Central Korea
Dissertations & Theses Europe Full Text: Business
ProQuest Central (New)
Dissertations & Theses Europe Full Text: Health & Medicine
ProQuest Dissertations & Theses Global: The Humanities and Social Sciences Collection
ProQuest One Academic Eastern Edition
ProQuest Dissertations & Theses Global: The Sciences and Engineering Collection
ProQuest Dissertations and Theses Professional
ProQuest Dissertations & Theses Global
Dissertations & Theses Europe Full Text: Science & Technology
Dissertations & Theses Europe Full Text: Social Sciences
ProQuest One Academic UKI Edition
ProQuest Dissertations and Theses A&I: The Humanities and Social Sciences Collection
Dissertations & Theses @ Northcentral University
ProQuest One Academic
ProQuest Dissertations & Theses A&I
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Genre Dissertation/Thesis
GroupedDBID 04Z
050
053
054
0BH
0IZ
8R4
8R5
ABUWG
AFKRA
AMEAF
AZQEC
BENPR
CBPLH
CCPQU
DWQXO
EU9
G20
M8-
P6D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q2X
ID FETCH-LOGICAL-g623-9a5d104325945e281d6742be37ad6adabd3c84ca851fb6e79a6965547f79fdf03
IEDL.DBID PIMPY
ISBN 9798837540622
IngestDate Mon Jun 30 02:33:54 EDT 2025
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g623-9a5d104325945e281d6742be37ad6adabd3c84ca851fb6e79a6965547f79fdf03
Notes SourceType-Dissertations & Theses-1
ObjectType-Dissertation/Thesis-1
content type line 12
OpenAccessLink https://www.proquest.com/publiccontent/docview/2705813023?pq-origsite=%requestingapplication%
PQID 2705813023
PQPubID 18750
ParticipantIDs proquest_journals_2705813023
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220101
  day: 01
PublicationDecade 2020
PublicationYear 2022
Publisher ProQuest Dissertations & Theses
Publisher_xml – name: ProQuest Dissertations & Theses
SSID ssib000933042
Score 1.933503
Snippet With the development of big data, the Internet of Things (IoT), and social media, the volume of data is being collected and stored exponentially. Some of the...
SourceID proquest
SourceType Aggregation Database
SubjectTerms Applied Mathematics
Computer Engineering
Computer science
Information science
Information Technology
Title Performance Overhead of Lossless Data Compression and Decompression Algorithms: A Qualitative Fundamental Research Study
URI https://www.proquest.com/docview/2705813023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB5s60EU6hMfteTgdek-k40XqbZVodZFeqinks2jCnWr3VX035vsbmlR8ORxs4SEkHyZycx8H8CZskPGiXAsxhxXOyjSt_S3smLfdZUnQylUrlrSJ4NBOBrRqCyPTsu0ygUm5kBdsD2bvG0Nwi0x4-bFvOUSOwhNzM27eH2zjIaUibWWghoVqBniLbsKtej2Lnr87b1vUUPTZdRfbWxkc3_AcH639Or_O6tt2OyshNh3YE0mu1BfiDeg8izvwWe0LBlA93pDa1QWaKZQX1-bU41_qMMyhkzHIlU2QSwRqCP5Skt7OtHjZ08v6Tlqo4KPI2cSRz1TYVIIB6BFdh8ySYtf-zDsdYdXN1Ypw2BNtG1kURYIxxD3BdQPpKvtW6zd6Vh6hAnMBIuFx0OfM226qRhLQhmmWBspRBGqhLK9A6gms0QeAlLc1w3apqCS-NiW1AkUFir2HG6I4YIjaCxWeVwepXS8XNTjv3-fwIZrahPy95EGVLP5uzyFdf6RPafzJtQuu4PooQmVa9duljvjG1IjzN4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gmGg0wWd8oO5Bj419t2tiDLESCAU5cMAT2XZ30QSLAj74Uf5HZwsNRBNvHDx2mzaZzOw3M7sz8wGcS91nsccNjTHDxARF2Bo-Sy2yTVNawhdcpqwlodds-p0ObeXgK-uFUWWVGSamQM0HsTojvzQ93fHVLZt18_KqKdYodbuaUWhMzaIuJh-Yso2uawHq98I0K3ft26o2YxXQeujqNcocbqg5dA61HWFiuOZidhgJy2PcZZxF3Ip9O2YYicjIFR5lLnXR53rSo5JL3cLfrkDBRlvX81Bo1Rqth9_HA5tUzQFT9LK6q3h5f-B86rwqxX8m9hZsBAtFAtuQE8kOFDP6CTJDo134bM2bHsg9bkn0K5wMJAnR8fcRwUnAxoyoD6fFvglhCSeBiBdWyv0eijt-fB5dkTKZThRJZ6GTiuqRmVIfkKw-kaiyy8ketJch-z7kk0EiDoDI2MYFjIqo8GxXF9RwpMtlZBmxGm3nHEIpU2N3Bgaj7lyHR3-_PoO1arsRdsNas34M66bqtEhPe0qQHw_fxAmsxu_jp9HwdGZ4BLpL1vk3FlcaoA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qKyIKvvFRdQ96DM17s4JINS2WllrEg7eyye5Woaba1kd_mv_O2TTBouCtB4_ZkMBmNt_M7H4zH8CJMgMeU2EZnFs2JijSNfBaGZFr28qRgRQqVS1p0XY7uL9nnQJ85rUwmlaZY2IK1GIQ6z3yik1NL9CnbE5FZbSITli_eH4xtIKUPmnN5TSmS6QpJ--Yvo3OGyHa-tS267W7q2sjUxgweuj2DcY9YemedB5zPWlj6OZjphhJh3Lhc8Ej4cSBG3OMSlTkS8q4z3z0v1RRpoQyHXztApSogzlPEUqXtXbn9vdWwSrTPcG01Kzpa43eH5ifOrL62j_-BOuwEs6QBzagIJNNWMtlKUiGUlvw0fkuhiA3-KuivxFkoEgLA4I-IjsJ-ZgT_eCUBJwQnggSynhmpNrv4XTHD0-jM1Il004jaY90Ute1M1NJBJLzFommY0624W4ec9-BYjJI5C4QFbs4gNESk9T1TcksT_lCRY4V65Z33h6Uc5N2M5AYdb_tuf_37WNYQkN3W4128wCWbV2AkW4ClaE4Hr7KQ1iM38aPo-FRtgYJdOds8i_QcyM6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&rft.genre=dissertation&rft.title=Performance+Overhead+of+Lossless+Data+Compression+and+Decompression+Algorithms%3A+A+Qualitative+Fundamental+Research+Study&rft.DBID=04Z%3B050%3B053%3B054%3B0BH%3B0IZ%3BAAFGM%3BABUWG%3BADZZV%3BAFKRA%3BAGAJT%3BAMEAF%3BAQTIP%3BAZQEC%3BBENPR%3BCBPLH%3BCCPQU%3BDWQXO%3BEU9%3BG20%3BM8-%3BP6D%3BPHGZM%3BPHGZT%3BPIMPY%3BPKEHL%3BPQCXX%3BPQEST%3BPQQKQ%3BPQUKI%3BPRINS&rft.PQPubID=18750&rft.au=Williams%2C+David+Michael&rft.date=2022-01-01&rft.pub=ProQuest+Dissertations+%26+Theses&rft.isbn=9798837540622&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798837540622/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798837540622/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798837540622/sc.gif&client=summon&freeimage=true