Blockade of senescence‐associated microRNA‐195 in aged skeletal muscle cells facilitates reprogramming to produce induced pluripotent stem cells

Summary The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that senescence‐associated microRNA (miR)‐195 targets Sirtuin 1 (SIRT1) to advance cellular senescence. Thus, we hypothesized that a blockade of miR‐195 expres...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Aging cell Ročník 15; číslo 1; s. 56 - 66
Hlavní autori: Kondo, Hideyuki, Kim, Ha Won, Wang, Lei, Okada, Motoi, Paul, Christian, Millard, Ronald W., Wang, Yigang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England John Wiley & Sons, Inc 01.02.2016
John Wiley and Sons Inc
Predmet:
ISSN:1474-9718, 1474-9726, 1474-9726
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that senescence‐associated microRNA (miR)‐195 targets Sirtuin 1 (SIRT1) to advance cellular senescence. Thus, we hypothesized that a blockade of miR‐195 expression could improve reprogramming efficiency in old skeletal myoblasts (SkMs). We found that miR‐195 expression was significantly higher in old SkMs (24 months) isolated from C57BL/6 mice as compared to young SkMs (2 months, 2.3‐fold). Expression of SIRT1 and telomerase reverse transcriptase (TERT) was downregulated in old SkMs, and transduction of old SkMs with lentiviral miR‐195 inhibitor significantly restored their expression. Furthermore, quantitative in situ hybridization analysis demonstrated significant telomere elongation in old SkMs transduced with anti‐miR‐195 (1.7‐fold increase). It is important to note that blocking miR‐195 expression markedly increased the reprogramming efficiency of old SkMs as compared to scramble (2.2‐fold increase). Transduction of anti‐miR‐195 did not alter karyotype or pluripotency marker expression. Induced pluripotent stem cells (iPSCs) from old SkMs transduced with anti‐miR‐195 successfully formed embryoid bodies that spontaneously differentiated into three germ layers, indicating that deletion of miR‐195 does not affect pluripotency in transformed SkMs. In conclusion, this study provided novel evidence that the blockade of age‐induced miR‐195 is a promising approach for efficient iPSC generation from aging donor subjects, which has the potential for autologous transplantation of iPSCs in elderly patients.
AbstractList The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that senescence-associated microRNA (miR)-195 targets Sirtuin 1 (SIRT1) to advance cellular senescence. Thus, we hypothesized that a blockade of miR-195 expression could improve reprogramming efficiency in old skeletal myoblasts (SkMs). We found that miR-195 expression was significantly higher in old SkMs (24 months) isolated from C57BL/6 mice as compared to young SkMs (2 months, 2.3-fold). Expression of SIRT1 and telomerase reverse transcriptase (TERT) was downregulated in old SkMs, and transduction of old SkMs with lentiviral miR-195 inhibitor significantly restored their expression. Furthermore, quantitative in situ hybridization analysis demonstrated significant telomere elongation in old SkMs transduced with anti-miR-195 (1.7-fold increase). It is important to note that blocking miR-195 expression markedly increased the reprogramming efficiency of old SkMs as compared to scramble (2.2-fold increase). Transduction of anti-miR-195 did not alter karyotype or pluripotency marker expression. Induced pluripotent stem cells (iPSCs) from old SkMs transduced with anti-miR-195 successfully formed embryoid bodies that spontaneously differentiated into three germ layers, indicating that deletion of miR-195 does not affect pluripotency in transformed SkMs. In conclusion, this study provided novel evidence that the blockade of age-induced miR-195 is a promising approach for efficient iPSC generation from aging donor subjects, which has the potential for autologous transplantation of iPSCs in elderly patients.
Summary The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that senescence‐associated microRNA (miR)‐195 targets Sirtuin 1 (SIRT1) to advance cellular senescence. Thus, we hypothesized that a blockade of miR‐195 expression could improve reprogramming efficiency in old skeletal myoblasts (SkMs). We found that miR‐195 expression was significantly higher in old SkMs (24 months) isolated from C57BL/6 mice as compared to young SkMs (2 months, 2.3‐fold). Expression of SIRT1 and telomerase reverse transcriptase (TERT) was downregulated in old SkMs, and transduction of old SkMs with lentiviral miR‐195 inhibitor significantly restored their expression. Furthermore, quantitative in situ hybridization analysis demonstrated significant telomere elongation in old SkMs transduced with anti‐miR‐195 (1.7‐fold increase). It is important to note that blocking miR‐195 expression markedly increased the reprogramming efficiency of old SkMs as compared to scramble (2.2‐fold increase). Transduction of anti‐miR‐195 did not alter karyotype or pluripotency marker expression. Induced pluripotent stem cells (iPSCs) from old SkMs transduced with anti‐miR‐195 successfully formed embryoid bodies that spontaneously differentiated into three germ layers, indicating that deletion of miR‐195 does not affect pluripotency in transformed SkMs. In conclusion, this study provided novel evidence that the blockade of age‐induced miR‐195 is a promising approach for efficient iPSC generation from aging donor subjects, which has the potential for autologous transplantation of iPSCs in elderly patients.
The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that senescence-associated microRNA (miR)-195 targets Sirtuin 1 (SIRT1) to advance cellular senescence. Thus, we hypothesized that a blockade of miR-195 expression could improve reprogramming efficiency in old skeletal myoblasts (SkMs). We found that miR-195 expression was significantly higher in old SkMs (24 months) isolated from C57BL/6 mice as compared to young SkMs (2 months, 2.3-fold). Expression of SIRT1 and telomerase reverse transcriptase (TERT) was downregulated in old SkMs, and transduction of old SkMs with lentiviral miR-195 inhibitor significantly restored their expression. Furthermore, quantitative in situ hybridization analysis demonstrated significant telomere elongation in old SkMs transduced with anti-miR-195 (1.7-fold increase). It is important to note that blocking miR-195 expression markedly increased the reprogramming efficiency of old SkMs as compared to scramble (2.2-fold increase). Transduction of anti-miR-195 did not alter karyotype or pluripotency marker expression. Induced pluripotent stem cells (iPSCs) from old SkMs transduced with anti-miR-195 successfully formed embryoid bodies that spontaneously differentiated into three germ layers, indicating that deletion of miR-195 does not affect pluripotency in transformed SkMs. In conclusion, this study provided novel evidence that the blockade of age-induced miR-195 is a promising approach for efficient iPSC generation from aging donor subjects, which has the potential for autologous transplantation of iPSCs in elderly patients.The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that senescence-associated microRNA (miR)-195 targets Sirtuin 1 (SIRT1) to advance cellular senescence. Thus, we hypothesized that a blockade of miR-195 expression could improve reprogramming efficiency in old skeletal myoblasts (SkMs). We found that miR-195 expression was significantly higher in old SkMs (24 months) isolated from C57BL/6 mice as compared to young SkMs (2 months, 2.3-fold). Expression of SIRT1 and telomerase reverse transcriptase (TERT) was downregulated in old SkMs, and transduction of old SkMs with lentiviral miR-195 inhibitor significantly restored their expression. Furthermore, quantitative in situ hybridization analysis demonstrated significant telomere elongation in old SkMs transduced with anti-miR-195 (1.7-fold increase). It is important to note that blocking miR-195 expression markedly increased the reprogramming efficiency of old SkMs as compared to scramble (2.2-fold increase). Transduction of anti-miR-195 did not alter karyotype or pluripotency marker expression. Induced pluripotent stem cells (iPSCs) from old SkMs transduced with anti-miR-195 successfully formed embryoid bodies that spontaneously differentiated into three germ layers, indicating that deletion of miR-195 does not affect pluripotency in transformed SkMs. In conclusion, this study provided novel evidence that the blockade of age-induced miR-195 is a promising approach for efficient iPSC generation from aging donor subjects, which has the potential for autologous transplantation of iPSCs in elderly patients.
The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that senescence-associated microRNA (miR)-195 targets Sirtuin 1 (SIRT1) to advance cellular senescence. Thus, we hypothesized that a blockade of miR-195 expression could improve reprogramming efficiency in old skeletal myoblasts (SkMs). We found that miR-195 expression was significantly higher in old SkMs (24 months) isolated from C57BL/6 mice as compared to young SkMs (2 months, 2.3-fold). Expression of SIRT1 and telomerase reverse transcriptase (TERT) was downregulated in old SkMs, and transduction of old SkMs with lentiviral miR-195 inhibitor significantly restored their expression. Furthermore, quantitative in situ hybridization analysis demonstrated significant telomere elongation in old SkMs transduced with anti-miR-195 (1.7-fold increase). It is important to note that blocking miR-195 expression markedly increased the reprogramming efficiency of old SkMs as compared to scramble (2.2-fold increase). Transduction of anti-miR-195 did not alter karyotype or pluripotency marker expression. Induced pluripotent stem cells (iPSCs) from old SkMs transduced with anti-miR-195 successfully formed embryoid bodies that spontaneously differentiated into three germ layers, indicating that deletion of miR-195 does not affect pluripotency in transformed SkMs. In conclusion, this study provided novel evidence that the blockade of age-induced miR-195 is a promising approach for efficient iPSC generation from aging donor subjects, which has the potential for autologous transplantation of iPSCs in elderly patients.
Summary The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that senescence-associated microRNA (miR)-195 targets Sirtuin 1 (SIRT1) to advance cellular senescence. Thus, we hypothesized that a blockade of miR-195 expression could improve reprogramming efficiency in old skeletal myoblasts (SkMs). We found that miR-195 expression was significantly higher in old SkMs (24 months) isolated from C57BL/6 mice as compared to young SkMs (2 months, 2.3-fold). Expression of SIRT1 and telomerase reverse transcriptase (TERT) was downregulated in old SkMs, and transduction of old SkMs with lentiviral miR-195 inhibitor significantly restored their expression. Furthermore, quantitative in situ hybridization analysis demonstrated significant telomere elongation in old SkMs transduced with anti-miR-195 (1.7-fold increase). It is important to note that blocking miR-195 expression markedly increased the reprogramming efficiency of old SkMs as compared to scramble (2.2-fold increase). Transduction of anti-miR-195 did not alter karyotype or pluripotency marker expression. Induced pluripotent stem cells (iPSCs) from old SkMs transduced with anti-miR-195 successfully formed embryoid bodies that spontaneously differentiated into three germ layers, indicating that deletion of miR-195 does not affect pluripotency in transformed SkMs. In conclusion, this study provided novel evidence that the blockade of age-induced miR-195 is a promising approach for efficient iPSC generation from aging donor subjects, which has the potential for autologous transplantation of iPSCs in elderly patients.
Audience Academic
Author Paul, Christian
Kim, Ha Won
Millard, Ronald W.
Wang, Lei
Wang, Yigang
Okada, Motoi
Kondo, Hideyuki
AuthorAffiliation 3 Cardiovascular Division of Coronary Heart Disease Department of Internal Medicine Hyogo College of Medicine 1‐1 Mukogawa Nishinomiya Hyogo 663‐8131 Japan
1 Department of Pathology and Lab Medicine University of Cincinnati 231 Albert Sabin Way Cincinnati OH 45267 USA
2 Department of Internal Medicine Vascular Biology Center Medical College of Georgia Georgia Regents University 1429 Laney Walker Blvd Augusta GA 30912 USA
AuthorAffiliation_xml – name: 1 Department of Pathology and Lab Medicine University of Cincinnati 231 Albert Sabin Way Cincinnati OH 45267 USA
– name: 2 Department of Internal Medicine Vascular Biology Center Medical College of Georgia Georgia Regents University 1429 Laney Walker Blvd Augusta GA 30912 USA
– name: 3 Cardiovascular Division of Coronary Heart Disease Department of Internal Medicine Hyogo College of Medicine 1‐1 Mukogawa Nishinomiya Hyogo 663‐8131 Japan
Author_xml – sequence: 1
  givenname: Hideyuki
  surname: Kondo
  fullname: Kondo, Hideyuki
  organization: University of Cincinnati
– sequence: 2
  givenname: Ha Won
  surname: Kim
  fullname: Kim, Ha Won
  organization: University of Cincinnati
– sequence: 3
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: University of Cincinnati
– sequence: 4
  givenname: Motoi
  surname: Okada
  fullname: Okada, Motoi
  organization: University of Cincinnati
– sequence: 5
  givenname: Christian
  surname: Paul
  fullname: Paul, Christian
  organization: University of Cincinnati
– sequence: 6
  givenname: Ronald W.
  surname: Millard
  fullname: Millard, Ronald W.
  organization: University of Cincinnati
– sequence: 7
  givenname: Yigang
  surname: Wang
  fullname: Wang, Yigang
  organization: University of Cincinnati
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26637971$$D View this record in MEDLINE/PubMed
BookMark eNqFUkuO1DAQjdAg5gMbDoAssWHTjZ34k2yQmtbwkVogIVhbbqccPOPYTZyAZscRWHBCTkJlemgYhIS9cLnq1XNV-Z0WRzFFKIqHjC4ZrqfGQliykjN2pzhhXPFFo0p5dLBZfVyc5nxBKVMNre4Vx6WUlcLASfH9eUj20rRAkiMZImQL0cKPr99Mzsl6M0JLem-H9O7NCr2sEcRHYjp050sIMJpA-inbAATLCJk4Y33wIyZmMsBuSN1g-t7HjoyJ4LWdLCDFfLRkF6bB79IIcSR5hH7Pcb-460zI8ODmPCs-vDh_v3612Lx9-Xq92iw6QSVbyK0TnDlJS1aV4ITYulpxWlfOVSCNUNyVJXVWbUXdVqISTjFDoTJbU0qQvDornu15d9O2hxY7HwcT9G7wvRmudDJe345E_1F36bPmiqlS1Ujw5IZgSJ8myKPufZ5bMBHSlDVrWNNILgX_P1RJWkv8MYrQx39BL9I0RJwEooSqmRRC_EZ1JoD20SUs0c6keqUoFlfzcn52-Q8U7hbwV1FHzqP_VsKjP2dyGMYvySCA7QFfMPPqEGdUz2LUsxj1tRj1an2-ubaqn7pc1kg
ContentType Journal Article
Copyright 2015 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd.
2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
COPYRIGHT 2015 John Wiley & Sons, Inc.
Copyright © 2016 The Anatomical Society and John Wiley & Sons Ltd
Copyright_xml – notice: 2015 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd.
– notice: 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
– notice: COPYRIGHT 2015 John Wiley & Sons, Inc.
– notice: Copyright © 2016 The Anatomical Society and John Wiley & Sons Ltd
DBID 24P
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1111/acel.12411
DatabaseName Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database

MEDLINE - Academic


MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate H. Kondo et al
EISSN 1474-9726
EndPage 66
ExternalDocumentID PMC4717278
3924674581
A707838424
26637971
ACEL12411
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Heart, Lung and Blood Institute
  funderid: HL‐107957; HL110740
– fundername: NHLBI NIH HHS
  grantid: HL-107957
– fundername: NHLBI NIH HHS
  grantid: R01 HL110740
– fundername: NHLBI NIH HHS
  grantid: HL110740
– fundername: National Heart, Lung and Blood Institute
  grantid: HL‐107957; HL110740
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
24P
2WC
31~
36B
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAMMB
AAZKR
ABCQN
ABDBF
ABEML
ABJNI
ACCMX
ACGFO
ACGFS
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AEGXH
AENEX
AFBPY
AFEBI
AFKRA
AFZJQ
AGXDD
AIAGR
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
E3Z
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HF~
HOLLA
HZ~
IAO
IHE
IHR
ITC
IX1
J0M
K.9
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M48
M7P
MK4
N04
N05
N9A
O9-
OBS
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PHGZM
PHGZT
PIMPY
PQGLB
PUEGO
Q11
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
WIN
WQJ
WXI
XG1
YFH
YUY
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
WRC
O8X
7QP
7TK
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-g5061-6bf541f602132ef55bf874083ff3e6a574f220fc7b58d3535f71a0e3aba26e643
IEDL.DBID 24P
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372879000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-9718
1474-9726
IngestDate Tue Nov 04 01:28:13 EST 2025
Tue Oct 07 09:37:32 EDT 2025
Fri Sep 05 07:10:52 EDT 2025
Wed Aug 13 04:13:09 EDT 2025
Sat Nov 29 13:37:21 EST 2025
Sat Nov 29 10:17:53 EST 2025
Wed Feb 19 01:59:03 EST 2025
Sun Sep 21 06:19:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords reprogramming
microRNA
aging cell
telomere length
Language English
License Attribution
2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g5061-6bf541f602132ef55bf874083ff3e6a574f220fc7b58d3535f71a0e3aba26e643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12411
PMID 26637971
PQID 1757816555
PQPubID 1036381
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4717278
proquest_miscellaneous_1919964654
proquest_miscellaneous_1760861470
proquest_journals_1757816555
gale_infotracmisc_A707838424
gale_infotracacademiconefile_A707838424
pubmed_primary_26637971
wiley_primary_10_1111_acel_12411_ACEL12411
PublicationCentury 2000
PublicationDate February 2016
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle Aging cell
PublicationTitleAlternate Aging Cell
PublicationYear 2016
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 1995; 92
2007; 100
2010; 467
2013; 305
2008; 105
2011; 13
2008; 3
2012; 125
2011; 3
2008; 2
2001; 107
2003; 299
2006; 311
1981; 292
2011; 226
2011; 109
2014; 5
2004; 116
2013; 14
2012; 3
2014; 2
2011; 92
1999; 36
2005; 6
2014; 13
2009; 460
2011; 25
2009; 4
2009; 19
2012; 7
2006; 126
2008; 451
2010; 5
2011; 286
2014; 31
2014; 289
20230312 - Regen Med. 2010 May;5(3):345-63
24256351 - Aging Cell. 2014 Feb;13(1):2-7
21792910 - J Cell Physiol. 2011 Oct;226(10):2535-42
22294612 - J Cell Sci. 2012 Jan 1;125(Pt 1):7-17
15768047 - Nat Rev Mol Cell Biol. 2005 Apr;6(4):298-305
23997098 - Am J Physiol Heart Circ Physiol. 2013 Nov 1;305(9):H1354-62
17446436 - Circ Res. 2007 May 25;100(10):1512-21
19668186 - Nature. 2009 Aug 27;460(7259):1140-4
7568133 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363-7
25119651 - Nat Commun. 2014;5:4597
19668188 - Nature. 2009 Aug 27;460(7259):1136-9
19200803 - Cell Stem Cell. 2009 Feb 6;4(2):141-54
20644535 - Nature. 2010 Sep 16;467(7313):285-90
18773452 - J Cell Biochem. 2008 Nov 1;105(4):940-8
23029150 - PLoS One. 2012;7(9):e45633
7242681 - Nature. 1981 Jul 9;292(5819):154-6
16456035 - Science. 2006 Mar 3;311(5765):1257
22101343 - PLoS Curr. 2011 Oct 27;3:RRN1274
23681063 - Nat Rev Genet. 2013 Jun;14(6):427-39
24733392 - J Biol Chem. 2014 May 30;289(22):15776-87
16873059 - Cell. 2006 Jul 28;126(2):257-68
22056670 - Genes Dev. 2011 Nov 1;25(21):2248-53
21778430 - Circ Res. 2011 Sep 2;109(6):670-9
16904174 - Cell. 2006 Aug 25;126(4):663-76
11672523 - Cell. 2001 Oct 19;107(2):149-59
21149440 - J Biol Chem. 2011 Feb 18;286(7):5289-99
22862934 - Stem Cell Res Ther. 2012;3(4):30
18955434 - Genome Res. 2009 Jan;19(1):92-105
10404142 - Cytometry. 1999 Aug 1;36(4):267-78
14980222 - Cell. 2004 Feb 20;116(4):551-63
21622680 - Cardiovasc Res. 2011 Oct 1;92(1):75-84
24784583 - N Biotechnol. 2014 Sep 25;31(5):411-21
18983962 - Cell Stem Cell. 2008 Nov 6;3(5):475-9
18371448 - Cell Stem Cell. 2008 Mar 6;2(3):230-40
24936455 - Stem Cell Reports. 2014 May 6;2(5):690-706
21566212 - Circ Res. 2011 Jun 24;109(1):60-70
21228011 - J Mol Cell Biol. 2011 Apr;3(2):91-8
18157115 - Nature. 2008 Jan 10;451(7175):141-6
12610295 - Science. 2003 Feb 28;299(5611):1351-4
24496101 - Nat Commun. 2014;5:3197
21804543 - Nat Cell Biol. 2011 Sep;13(9):1092-9
18772878 - Nat Protoc. 2008;3(9):1501-9
References_xml – volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 4
  start-page: 141
  year: 2009
  end-page: 154
  article-title: Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells
  publication-title: Cell Stem Cell
– volume: 126
  start-page: 257
  year: 2006
  end-page: 268
  article-title: Sirtuins in aging and age‐related disease
  publication-title: Cell
– volume: 3
  start-page: 30
  year: 2012
  article-title: Genetic background affects induced pluripotent stem cell generation
  publication-title: Stem Cell Res. Ther.
– volume: 5
  start-page: 3197
  year: 2014
  article-title: Foxd1 is a mediator and indicator of the cell reprogramming process
  publication-title: Nat. Commun.
– volume: 19
  start-page: 92
  year: 2009
  end-page: 105
  article-title: Most mammalian mRNAs are conserved targets of microRNAs
  publication-title: Genome Res.
– volume: 105
  start-page: 940
  year: 2008
  end-page: 948
  article-title: Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states
  publication-title: J. Cell. Biochem.
– volume: 6
  start-page: 298
  year: 2005
  end-page: 305
  article-title: Calorie restriction, SIRT1 and metabolism: understanding longevity
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 14
  start-page: 427
  year: 2013
  end-page: 439
  article-title: Mechanisms and models of somatic cell reprogramming
  publication-title: Nat. Rev. Genet.
– volume: 311
  start-page: 1257
  year: 2006
  article-title: Cellular senescence in aging primates
  publication-title: Science
– volume: 13
  start-page: 1092
  year: 2011
  end-page: 1099
  article-title: FOXO1 is an essential regulator of pluripotency in human embryonic stem cells
  publication-title: Nat. Cell Biol.
– volume: 107
  start-page: 149
  year: 2001
  end-page: 159
  article-title: hSIR2(SIRT1) functions as an NAD‐dependent p53 deacetylase
  publication-title: Cell
– volume: 292
  start-page: 154
  year: 1981
  end-page: 156
  article-title: Establishment in culture of pluripotential cells from mouse embryos
  publication-title: Nature
– volume: 2
  start-page: 690
  year: 2014
  end-page: 706
  article-title: SIRT1 is necessary for proficient telomere elongation and genomic stability of induced pluripotent stem cells
  publication-title: Stem Cell Rep.
– volume: 36
  start-page: 267
  year: 1999
  end-page: 278
  article-title: Telomere length measurements using digital fluorescence microscopy
  publication-title: Cytometry
– volume: 3
  start-page: RRN1274
  year: 2011
  article-title: Reprogramming efficiency and quality of induced Pluripotent Stem Cells (iPSCs) generated from muscle‐derived fibroblasts of mdx mice at different ages
  publication-title: PLoS Curr.
– volume: 3
  start-page: 91
  year: 2011
  end-page: 98
  article-title: Establishment of induced pluripotent stem cells from aged mice using bone marrow‐derived myeloid cells
  publication-title: J. Mol. Cell Biol.
– volume: 286
  start-page: 5289
  year: 2011
  end-page: 5299
  article-title: FoxO1 mediates an autofeedback loop regulating SIRT1 expression
  publication-title: J. Biol. Chem.
– volume: 460
  start-page: 1136
  year: 2009
  end-page: 1139
  article-title: The Ink4/Arf locus is a barrier for iPS cell reprogramming
  publication-title: Nature
– volume: 25
  start-page: 2248
  year: 2011
  end-page: 2253
  article-title: Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state
  publication-title: Genes Dev.
– volume: 7
  start-page: e45633
  year: 2012
  article-title: Sirtuin 1 facilitates generation of induced pluripotent stem cells from mouse embryonic fibroblasts through the miR‐34a and p53 pathways
  publication-title: PLoS ONE
– volume: 5
  start-page: 345
  year: 2010
  end-page: 363
  article-title: Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming
  publication-title: Regen. Med.
– volume: 460
  start-page: 1140
  year: 2009
  end-page: 1144
  article-title: Linking the p53 tumour suppressor pathway to somatic cell reprogramming
  publication-title: Nature
– volume: 2
  start-page: 230
  year: 2008
  end-page: 240
  article-title: Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse
  publication-title: Cell Stem Cell
– volume: 5
  start-page: 4597
  year: 2014
  article-title: miR‐195/497 induce postnatal quiescence of skeletal muscle stem cells
  publication-title: Nat. Commun.
– volume: 299
  start-page: 1351
  year: 2003
  end-page: 1354
  article-title: Genetics and the specificity of the aging process
  publication-title: Science
– volume: 226
  start-page: 2535
  year: 2011
  end-page: 2542
  article-title: Down‐regulation of cyclin E1 expression by microRNA‐195 accounts for interferon‐beta‐induced inhibition of hepatic stellate cell proliferation
  publication-title: J. Cell. Physiol.
– volume: 451
  start-page: 141
  year: 2008
  end-page: 146
  article-title: Reprogramming of human somatic cells to pluripotency with defined factors
  publication-title: Nature
– volume: 3
  start-page: 1501
  year: 2008
  end-page: 1509
  article-title: Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique
  publication-title: Nat. Protoc.
– volume: 13
  start-page: 2
  year: 2014
  end-page: 7
  article-title: The aging signature: a hallmark of induced pluripotent stem cells?
  publication-title: Aging Cell
– volume: 125
  start-page: 7
  year: 2012
  end-page: 17
  article-title: MicroRNAs and their roles in aging
  publication-title: J. Cell Sci.
– volume: 109
  start-page: 60
  year: 2011
  end-page: 70
  article-title: Reprogramming of skeletal myoblasts for induction of pluripotency for tumor‐free cardiomyogenesis in the infarcted heart
  publication-title: Circ. Res.
– volume: 92
  start-page: 75
  year: 2011
  end-page: 84
  article-title: MicroRNA‐195 promotes palmitate‐induced apoptosis in cardiomyocytes by down‐regulating Sirt1
  publication-title: Cardiovasc. Res.
– volume: 3
  start-page: 475
  year: 2008
  end-page: 479
  article-title: Two supporting factors greatly improve the efficiency of human iPSC generation
  publication-title: Cell Stem Cell
– volume: 92
  start-page: 9363
  year: 1995
  end-page: 9367
  article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 31
  start-page: 411
  year: 2014
  end-page: 421
  article-title: iPSCs, aging and age‐related diseases
  publication-title: N Biotechnol.
– volume: 116
  start-page: 551
  year: 2004
  end-page: 563
  article-title: Mammalian SIRT1 represses forkhead transcription factors
  publication-title: Cell
– volume: 100
  start-page: 1512
  year: 2007
  end-page: 1521
  article-title: Sirt1 regulates aging and resistance to oxidative stress in the heart
  publication-title: Circ. Res.
– volume: 289
  start-page: 15776
  year: 2014
  end-page: 15787
  article-title: Telomerase reverse transcriptase has an extratelomeric function in somatic cell reprogramming
  publication-title: J. Biol. Chem.
– volume: 109
  start-page: 670
  year: 2011
  end-page: 679
  article-title: MiR‐15 family regulates postnatal mitotic arrest of cardiomyocytes
  publication-title: Circ. Res.
– volume: 467
  start-page: 285
  year: 2010
  end-page: 290
  article-title: Epigenetic memory in induced pluripotent stem cells
  publication-title: Nature
– volume: 305
  start-page: H1354
  year: 2013
  end-page: H1362
  article-title: Identification of small juvenile stem cells in aged bone marrow and their therapeutic potential for repair of the ischemic heart
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– reference: 21149440 - J Biol Chem. 2011 Feb 18;286(7):5289-99
– reference: 22862934 - Stem Cell Res Ther. 2012;3(4):30
– reference: 18157115 - Nature. 2008 Jan 10;451(7175):141-6
– reference: 21792910 - J Cell Physiol. 2011 Oct;226(10):2535-42
– reference: 10404142 - Cytometry. 1999 Aug 1;36(4):267-78
– reference: 24256351 - Aging Cell. 2014 Feb;13(1):2-7
– reference: 21778430 - Circ Res. 2011 Sep 2;109(6):670-9
– reference: 18955434 - Genome Res. 2009 Jan;19(1):92-105
– reference: 11672523 - Cell. 2001 Oct 19;107(2):149-59
– reference: 18371448 - Cell Stem Cell. 2008 Mar 6;2(3):230-40
– reference: 20230312 - Regen Med. 2010 May;5(3):345-63
– reference: 23997098 - Am J Physiol Heart Circ Physiol. 2013 Nov 1;305(9):H1354-62
– reference: 18983962 - Cell Stem Cell. 2008 Nov 6;3(5):475-9
– reference: 20644535 - Nature. 2010 Sep 16;467(7313):285-90
– reference: 22294612 - J Cell Sci. 2012 Jan 1;125(Pt 1):7-17
– reference: 21804543 - Nat Cell Biol. 2011 Sep;13(9):1092-9
– reference: 19200803 - Cell Stem Cell. 2009 Feb 6;4(2):141-54
– reference: 7242681 - Nature. 1981 Jul 9;292(5819):154-6
– reference: 18773452 - J Cell Biochem. 2008 Nov 1;105(4):940-8
– reference: 22056670 - Genes Dev. 2011 Nov 1;25(21):2248-53
– reference: 7568133 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363-7
– reference: 21566212 - Circ Res. 2011 Jun 24;109(1):60-70
– reference: 17446436 - Circ Res. 2007 May 25;100(10):1512-21
– reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76
– reference: 19668188 - Nature. 2009 Aug 27;460(7259):1136-9
– reference: 24936455 - Stem Cell Reports. 2014 May 6;2(5):690-706
– reference: 24784583 - N Biotechnol. 2014 Sep 25;31(5):411-21
– reference: 21228011 - J Mol Cell Biol. 2011 Apr;3(2):91-8
– reference: 14980222 - Cell. 2004 Feb 20;116(4):551-63
– reference: 12610295 - Science. 2003 Feb 28;299(5611):1351-4
– reference: 16456035 - Science. 2006 Mar 3;311(5765):1257
– reference: 24733392 - J Biol Chem. 2014 May 30;289(22):15776-87
– reference: 23681063 - Nat Rev Genet. 2013 Jun;14(6):427-39
– reference: 19668186 - Nature. 2009 Aug 27;460(7259):1140-4
– reference: 24496101 - Nat Commun. 2014;5:3197
– reference: 15768047 - Nat Rev Mol Cell Biol. 2005 Apr;6(4):298-305
– reference: 22101343 - PLoS Curr. 2011 Oct 27;3:RRN1274
– reference: 23029150 - PLoS One. 2012;7(9):e45633
– reference: 21622680 - Cardiovasc Res. 2011 Oct 1;92(1):75-84
– reference: 18772878 - Nat Protoc. 2008;3(9):1501-9
– reference: 16873059 - Cell. 2006 Jul 28;126(2):257-68
– reference: 25119651 - Nat Commun. 2014;5:4597
SSID ssj0017903
Score 2.3150177
Snippet Summary The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that...
The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that senescence-associated...
Summary The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that...
The low reprogramming efficiency in cells from elderly patients is a challenge that must be overcome. Recently, it has been reported that senescence‐associated...
SourceID pubmedcentral
proquest
gale
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 56
SubjectTerms Age Factors
aging cell
Animals
Cell Differentiation - physiology
Cells, Cultured
Cellular Reprogramming - genetics
Cellular Senescence
Comparative analysis
Fibroblasts - cytology
Induced Pluripotent Stem Cells - metabolism
Mice
Mice, Inbred C57BL
MicroRNA
MicroRNAs - metabolism
Muscle Fibers, Skeletal - cytology
Muscle Fibers, Skeletal - metabolism
Muscles
Original
reprogramming
Stem cells
Telomerase
telomere length
Telomeres
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC50VfDi-xFdpQVBEFon6e50-iTjsosHGRZR2Fvo9EOH3UnGzYzgv_AnW9XJjDt72IunJPQjCfX6Ol35CuC1aURsvNZ8IkTBpfeOW-UkXiJ8zaUugxmKTejZrDo5McfjB7d-TKvc-MTkqH3n6Bv5-5yI1_NSKfVh-ZNT1SjaXR1LaFyHG8SSIFLq3vF2F0GbVBkZbym5QSc80pNSJo914ewdxjaqHHTZF18IRpcTJS8C2BSBju7-77Pfgzsj9mTTQVnuw7XQPoBbQzXK3w_hz0cMbKfWB9ZF1pMPdGT23I4SDJ4tKH3vy2zKc6PYvGXojDzrTzF0IYZni3WP8zLaC-hZtG4gAA89I-bMlAa2wEDJVh1bJp7ZgFPQwbPl2RqdV4f4fcWIWXqY4xF8Ozr8evCJjwUb-HeFuICXTVQyjyXiBlGEqFQTqeJfJWIUobRKy1gUk-h0oyovlFBR53YShG1sUQbERo9hr-3a8BSYqUSlZDAKW6TQ3uCCWfmCGMIaXIH5DN6Q1GoyQxSNs-PfBDiaCK3qKbEYiUoWMoP9nZ5oPm63eSOzejTfvv4nsAxebZtpJKWktaFbU58Sl4OoW5Mr-hhK8ibKugyeDKpULwcWkRqRkdColRnoHSXbdiDi792Wdv4jEYAjoEDYWWXwNqnjdsRmQUfKXSflrqcHh5_T2bOr3_M53EYoOOaj78Pe6nwdXsBN92s1789fJrP6C9AKK6E
  priority: 102
  providerName: ProQuest
Title Blockade of senescence‐associated microRNA‐195 in aged skeletal muscle cells facilitates reprogramming to produce induced pluripotent stem cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12411
https://www.ncbi.nlm.nih.gov/pubmed/26637971
https://www.proquest.com/docview/1757816555
https://www.proquest.com/docview/1760861470
https://www.proquest.com/docview/1919964654
https://pubmed.ncbi.nlm.nih.gov/PMC4717278
Volume 15
WOSCitedRecordID wos000372879000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: WIN
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1474-9726
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017903
  issn: 1474-9718
  databaseCode: 24P
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ditNAFB6WrYI3rv9mXcsIgiBEmsxMJgPedJcuLmgoi2K9CpPMjJbdJmXTCt75CF74hD6J50zS2CoI4k3b9JyZFub8fJOc-Q4hT1XBXGGkDEeMxSE3pgy1KDlcAnyNuEysaptNyCxLZzM13SMvN2dhWn6I_oYbeoaP1-jgumi2nFyX9vIFZCc82DuIIpZi44aYT_tnCFL5vsjwgzxUEII7clKs4_k19s9IvJWKfi-T3IavPv-cHvzfP79Fbna4k45bQ7lN9mx1h1xvO1F-uUu-H0NSu9DG0trRBuNfiS7_4-s33a2fNXSBxXvn2Ri-jZSg84pCMDK0uYDUBRieLtYNzE3xWUBDnS5bAnDbUGTO9GVgC0iUdFXTpeeZtTAFvhm6vFxD8KoBv68oMku3c9wj704nb09ehV3DhvCjAFwQJoUTPHIJ4AYWWydE4bDjX8qcYzbRQnIXxyNXykKkhgkmnIz0yDJd6DixgI3uk_2qruxDQlXKUsGtEiDhTBoFG2ZhYmQIK2AHZgLyDNctRzeExSl1d5oARiOhVT5GFiOW8pgH5GhHE9yn3BVvVj7v3LfJI2T5jxIhRECe9GIciSVpla3XqJPAdhCsa_QXHYVF3khZF5AHrTHly5ZFJAdkxCTYZUDkjpn1Ckj8vSup5p88ATgACoCdaUCeezPrR2w2dGhguTewfHwyee0_Hf6L8iNyA4BhV51-RPZXV2v7mFwrP6_mzdXQuxm8ylk6JIPjSTY9H_p7GUOsnAXJYHr2ZvoBrt6fZT8BU7A0gQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VAoIL3wVDgUUCISEtjXe9XvuAUCitWjVEFSpSb8b27kLUxg51Auq_4JfwG5lZO6HpobceOCXRfkh23ryZ8Y7fALxMC-kKozXvSSl4ZEzJc1VG-BPD1zDSsU3bZhN6OEwOD9P9FfgzfxeGyirnnOiJ2tQlPSPfCEl4PYyVUu8nPzh1jaLT1XkLjRYWe_b0F6Zszbvdj_j_vhJie-tgc4d3XQX4N4XOi8eFU1HoYnRuUlinVOGoLV0inZM2zpWOnBA9V-pCJUYqqZwO856VeZGL2KIDx32vwFUMI0TiSwX3F6cWOvWdmPESI54i6XdyqFQ5lJf2-C36UupUdJ77zzi_84WZZwNm7_G2b_9v9-oO3Opia9ZvjeEurNjqHlxvu22e3offH9BxH-XGstqxhji-JFrjeYdQa9iYyhM_D_s8TBUbVQzJ1rDmCF0z5ihsPGtwX0ZnHQ1zedkKnNuGkTKoL3MbYyDApjWbeB1di1vQh2GT4xmSc435yZSRcna7xwP4cim3Yw1Wq7qyj4CliUxUZFOFI5HUJlVCKiNIAa3ADNME8JpQkhHNIBTKvHtbAleTYFfWJ5UmmUQiCmB9aSbSQ7k8PMdI1tFTk_0DSAAvFsO0kkruKlvPaE6M6S5iuXfBnJSK2EmSL4CHLXSzSauSkmHkJzVaQQB6CdSLCSRsvjxSjb57gXMMmDCsTgJ44-G_WDFPWMmYMm9MWX9za-C_Pb74Op_DjZ2DT4NssDvcewI3Meztau_XYXV6MrNP4Vr5czpqTp55k2bw9bLt4i-4Uobl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7IemFfvOtWV40gCEKXaZM0zeO47qC4DIMo7FtJm0SH3WmH7Yzgmz_BB3-hv8Rz0m6dURDEp15ykhZyLl_ak-8APNMl96VVKh5xnsbC2io2shJ4ifA1ESpzuis2oabT_OREz_rcHNoL0_FDDB_cyDKCvyYDd0vrN6zcVO7sAMMT7ey9LKRKSKlTMRt-IigdCiPjE0Ws0Qf37KSUyPOr75-ueCMW_Z4nuYlfQwCa3PjPV78J13vkycadqtyCS66-DVe7WpRf7sD3lxjWTo11rPGsJQ9YkdH_-PrN9DPoLFtQ-t676RjvJlqyec3QHVnWnmLwQhTPFusWx2b0N6Bl3lQdBbhrGXFnhkSwBYZKtmrYMjDNOhyCDpYtz9bovhpE8CtG3NLdGHfhw-To_eHruC_ZEH-UiAzirPRSJD5D5MBT56UsPdX8y7n33GVGKuHTdOQrVcrccsmlV4kZOW5Kk2YO0dE92Kmb2u0B0znPpXBaYovgympcMkubEkdYiWswG8FzmriCDBFnpzL9fgLsTZRWxZh4jHguUhHB_pYkGlC13Xwx9UVvwG2REM9_kkkpI3g6NFNPSkqrXbMmmQwXhKheo7_IaErzJtK6CO532lQsOx6RArERV6iYEagtPRsEiPp7u6WefwoU4AgpEHjmEbwIejb0uFjSkYIVQcGK8eHRcTh78C_CT-Da7NWkOH4zffsQdhEl9qnq-7CzOl-7R3Cl-ryat-ePg8n9BPuMMMM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blockade+of+senescence-associated+microRNA-195+in+aged+skeletal+muscle+cells+facilitates+reprogramming+to+produce+induced+pluripotent+stem+cells&rft.jtitle=Aging+cell&rft.au=Kondo%2C+Hideyuki&rft.au=Kim%2C+Ha+Won&rft.au=Wang%2C+Lei&rft.au=Okada%2C+Motoi&rft.date=2016-02-01&rft.issn=1474-9726&rft.eissn=1474-9726&rft.volume=15&rft.issue=1&rft.spage=56&rft_id=info:doi/10.1111%2Facel.12411&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon