A Reaction‐Induced Localization of Spin Density Enables Thermal C−H Bond Activation of Methane by Pristine FeC4
The reactivity of the cationic metal‐carbon cluster FeC4+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass spectrometry and computationally by high‐level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product...
Gespeichert in:
| Veröffentlicht in: | Chemistry : a European journal Jg. 25; H. 56; S. 12940 - 12945 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
Wiley Subscription Services, Inc
08.10.2019
John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 0947-6539, 1521-3765, 1521-3765 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The reactivity of the cationic metal‐carbon cluster FeC4+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass spectrometry and computationally by high‐level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C−H bond activation step proceeds through a radical‐based hydrogen‐atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4+, which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp‐orbital of the terminal carbon atom of FeC4+ migrates to the singly occupied π*‐orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C−H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed‐shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition‐metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen‐atom transfer.
Getting together: Radical‐type hydrogen‐atom transfer transpires by localized spin density generated in situ once the reaction partners approach each other. |
|---|---|
| AbstractList | The reactivity of the cationic metal‐carbon cluster FeC4
+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass spectrometry and computationally by high‐level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C−H bond activation step proceeds through a radical‐based hydrogen‐atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4
+, which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp‐orbital of the terminal carbon atom of FeC4
+ migrates to the singly occupied π*‐orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C−H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed‐shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition‐metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen‐atom transfer.
Getting together: Radical‐type hydrogen‐atom transfer transpires by localized spin density generated in situ once the reaction partners approach each other. The reactivity of the cationic metal‐carbon cluster FeC4+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass spectrometry and computationally by high‐level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C−H bond activation step proceeds through a radical‐based hydrogen‐atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4+, which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp‐orbital of the terminal carbon atom of FeC4+ migrates to the singly occupied π*‐orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C−H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed‐shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition‐metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen‐atom transfer. The reactivity of the cationic metal-carbon cluster FeC4 + towards methane has been studied experimentally using Fourier-transform ion cyclotron resonance mass spectrometry and computationally by high-level quantum chemical calculations. At room temperature, FeC4 H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C-H bond activation step proceeds through a radical-based hydrogen-atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4 + , which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp-orbital of the terminal carbon atom of FeC4 + migrates to the singly occupied π*-orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C-H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed-shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition-metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen-atom transfer.The reactivity of the cationic metal-carbon cluster FeC4 + towards methane has been studied experimentally using Fourier-transform ion cyclotron resonance mass spectrometry and computationally by high-level quantum chemical calculations. At room temperature, FeC4 H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C-H bond activation step proceeds through a radical-based hydrogen-atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4 + , which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp-orbital of the terminal carbon atom of FeC4 + migrates to the singly occupied π*-orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C-H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed-shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition-metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen-atom transfer. The reactivity of the cationic metal‐carbon cluster FeC4+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass spectrometry and computationally by high‐level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C−H bond activation step proceeds through a radical‐based hydrogen‐atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4+, which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp‐orbital of the terminal carbon atom of FeC4+ migrates to the singly occupied π*‐orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C−H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed‐shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition‐metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen‐atom transfer. Getting together: Radical‐type hydrogen‐atom transfer transpires by localized spin density generated in situ once the reaction partners approach each other. |
| Author | Schwarz, Helmut Li, Jilai Geng, Caiyun Weiske, Thomas |
| AuthorAffiliation | 1 Institute of Theoretical Chemistry Jilin University 130023 Changchun P. R. China 2 Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany |
| AuthorAffiliation_xml | – name: 1 Institute of Theoretical Chemistry Jilin University 130023 Changchun P. R. China – name: 2 Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany |
| Author_xml | – sequence: 1 givenname: Caiyun orcidid: 0000-0003-1451-9885 surname: Geng fullname: Geng, Caiyun organization: Technische Universität Berlin – sequence: 2 givenname: Jilai orcidid: 0000-0002-3363-9164 surname: Li fullname: Li, Jilai email: Jilai@jlu.edu.cn organization: Technische Universität Berlin – sequence: 3 givenname: Thomas orcidid: 0000-0003-4756-2548 surname: Weiske fullname: Weiske, Thomas organization: Technische Universität Berlin – sequence: 4 givenname: Helmut orcidid: 0000-0002-3369-7997 surname: Schwarz fullname: Schwarz, Helmut email: Helmut.Schwarz@tu-berlin.de organization: Technische Universität Berlin |
| BookMark | eNpdkU1v0zAchy00xLrBlbMlLlwy_JI49gWphG6d1AkE42zZzr-rp8QucTJUThx3RHzEfRJcbaoEJ789fuSffyfoKMQACL2m5IwSwt65DfRnjFBFWFWzZ2hGK0YLXovqCM2IKutCVFwdo5OUbgkhSnD-Ah1zyoSkis9QmuMvYNzoY3j49fsytJODFq-iM53_afbbOK7x160P-COE5McdXgRjO0j4egNDbzrcPNz_WeIPMbR4nkV3h1tXMG5MAGx3-PPg0-jz_Bya8iV6vjZdgldP4yn6dr64bpbF6tPFZTNfFTdcSVaomq9LI6hyOY6FumyBttwaWVpTSyNE2TIFlQNjnK3XpZMZo5ZbSYiUvOWn6P2jdzvZHloHYRxMp7eD782w09F4_e9J8Bt9E--0kBUrpciCt0-CIX6fII2698lB1-VUcUqasYrWhOQvz-ib_9DbOA0hx9OM53oYycpMqUfqh-9gd3gJJXpfpt6XqQ9l6ma5uDqs-F9_nZgD |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. – notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P 7SR 8BQ 8FD JG9 K9. 7X8 5PM |
| DOI | 10.1002/chem.201902572 |
| DatabaseName | Wiley Online Library Open Access Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | 12945 |
| ExternalDocumentID | PMC6852486 CHEM201902572 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21473070 and 21773085 – fundername: Deutsche Forschungsgemeinschaft funderid: EXC/314-1 – fundername: Fonds der Chemischen Industrie funderid: 160 187 – fundername: ; grantid: 21473070 and 21773085 – fundername: ; grantid: EXC/314-1 – fundername: Fonds der Chemischen Industrie grantid: 160 187 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT 7SR 8BQ 8FD AEYWJ AGHNM AGYGG JG9 K9. 7X8 5PM |
| ID | FETCH-LOGICAL-g3982-973f4a619c376be74de1d3ba84ba78a664d29e5ceaacb7f4c876b1b3b800883d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480848400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Tue Sep 30 16:51:29 EDT 2025 Fri Jul 11 12:05:40 EDT 2025 Tue Oct 07 06:50:36 EDT 2025 Wed Jan 22 16:39:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 56 |
| Language | English |
| License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-g3982-973f4a619c376be74de1d3ba84ba78a664d29e5ceaacb7f4c876b1b3b800883d3 |
| Notes | th This article is dedicated to Professor Yitzhak Apeloig on the occasion of his 75 birthday. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article is dedicated to Professor Yitzhak Apeloig on the occasion of his 75th birthday. |
| ORCID | 0000-0002-3363-9164 0000-0002-3369-7997 0000-0003-4756-2548 0000-0003-1451-9885 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201902572 |
| PMID | 31268193 |
| PQID | 2301920524 |
| PQPubID | 986340 |
| PageCount | 6 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6852486 proquest_miscellaneous_2251700152 proquest_journals_2301920524 wiley_primary_10_1002_chem_201902572_CHEM201902572 |
| PublicationCentury | 2000 |
| PublicationDate | October 8, 2019 |
| PublicationDateYYYYMMDD | 2019-10-08 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 8, 2019 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Hoboken |
| PublicationSubtitle | A European Journal |
| PublicationTitle | Chemistry : a European journal |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 1973; 181 1971; 27 2009; 281 1973; 58 2000; 318 2015; 629 1995 2008; 105 2019; 141 2017; 139 2006 2006; 45 118 2014; 5 2016 2016; 55 128 2011; 108 2005; 244 2017; 16 2012 2012; 51 124 2005; 105 2018; 554 2015; 87 2011; 44 2015 2015; 54 127 2018; 51 2015 2016; 138 1999; 71 2010; 2 2012; 45 1972; 56 1966; 66 2014; 54 1955; 77 2014; 344 |
| References_xml | – volume: 281 start-page: 63 year: 2009 end-page: 71 publication-title: Int. J. Mass Spectrom. – volume: 181 start-page: 547 year: 1973 end-page: 549 publication-title: Science – volume: 139 start-page: 17201 year: 2017 end-page: 17212 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 13072 13266 year: 2016 2016 end-page: 13075 13269 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 start-page: 3027 year: 1973 end-page: 3037 publication-title: J. Chem. Phys. – volume: 344 start-page: 616 year: 2014 end-page: 619 publication-title: Science – volume: 629 start-page: 91 year: 2015 end-page: 101 publication-title: Chem. Phys. Lett. – volume: 554 start-page: 86 year: 2018 end-page: 91 publication-title: Nature – volume: 51 start-page: 2382 year: 2018 end-page: 2390 publication-title: Acc. Chem. Res. – volume: 138 start-page: 4237 year: 2016 end-page: 4242 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 1975 year: 2018 end-page: 1983 publication-title: Acc. Chem. Res. – volume: 77 start-page: 334 year: 1955 end-page: 338 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 36 year: 2011 end-page: 46 publication-title: Acc. Chem. Res. – volume: 51 start-page: 2391 year: 2018 end-page: 2399 publication-title: Acc. Chem. Res. – volume: 139 start-page: 1684 year: 2017 end-page: 1689 publication-title: J. Am. Chem. Soc. – volume: 71 start-page: 1253 year: 1999 end-page: 1266 publication-title: Rev. Mod. Phys. – volume: 27 start-page: 1329 year: 1971 end-page: 1332 publication-title: Phys. Rev. Lett. – volume: 54 127 start-page: 5074 5163 year: 2015 2015 end-page: 5078 5167 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 5783 year: 2014 publication-title: Nat. Commun. – volume: 51 start-page: 2006 year: 2018 end-page: 2013 publication-title: Acc. Chem. Res. – volume: 51 start-page: 2603 year: 2018 end-page: 2610 publication-title: Acc. Chem. Res. – volume: 54 start-page: 1413 year: 2014 end-page: 1431 publication-title: Isr. J. Chem. – volume: 45 118 start-page: 4681 4797 year: 2006 2006 end-page: 4685 4801 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 7973 year: 2016 end-page: 7981 publication-title: J. Am. Chem. Soc. – volume: 108 start-page: 1228 year: 2011 end-page: 1233 publication-title: Proc. Natl. Acad. Sci. USA – volume: 51 124 start-page: 5556 5652 year: 2012 2012 end-page: 5578 5676 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 start-page: 4711 year: 1972 end-page: 4712 publication-title: J. Chem. Phys. – volume: 87 start-page: 897 year: 2015 end-page: 923 publication-title: Rev. Mod. Phys. – volume: 105 start-page: 18114 year: 2008 end-page: 18119 publication-title: Proc. Natl. Acad. Sci. USA – volume: 318 start-page: 149 year: 2000 end-page: 154 publication-title: Chem. Phys. Lett. – volume: 45 118 start-page: 5705 5835 year: 2006 2006 end-page: 5708 5838 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 10090 10228 year: 2015 2015 end-page: 10100 10239 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 1995 – volume: 51 start-page: 2601 year: 2018 end-page: 2602 publication-title: Acc. Chem. Res. – volume: 51 start-page: 107 year: 2018 end-page: 117 publication-title: Acc. Chem. Res. – volume: 105 start-page: 185 year: 2005 end-page: 212 publication-title: Chem. Rev. – volume: 45 start-page: 382 year: 2012 end-page: 390 publication-title: Acc. Chem. Res. – volume: 66 start-page: 465 year: 1966 end-page: 500 publication-title: Chem. Rev. – volume: 244 start-page: 84 year: 2005 end-page: 90 publication-title: Int. J. Mass Spectrom. – volume: 51 124 start-page: 5544 5638 year: 2012 2012 end-page: 5555 5650 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 11368 year: 2016 end-page: 11377 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 225 year: 2017 end-page: 229 publication-title: Nat. Mater. – year: 2015 – volume: 2 start-page: 819 year: 2010 end-page: 826 publication-title: ChemCatChem – volume: 141 start-page: 4487 year: 2019 publication-title: J. Am. Chem. Soc. |
| SSID | ssj0009633 |
| Score | 2.4063978 |
| Snippet | The reactivity of the cationic metal‐carbon cluster FeC4+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass... The reactivity of the cationic metal-carbon cluster FeC4 + towards methane has been studied experimentally using Fourier-transform ion cyclotron resonance mass... The reactivity of the cationic metal‐carbon cluster FeC4 + towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass... |
| SourceID | pubmedcentral proquest wiley |
| SourceType | Open Access Repository Aggregation Database Publisher |
| StartPage | 12940 |
| SubjectTerms | Carbon Chemistry Computer applications Cyclotron resonance Density gas-phase reaction Hydrogen Hydrogen bonds hydrogen-atom transfer Localization Mass spectrometry Mass spectroscopy Mathematical analysis metal carbide Metal carbides Methane methane activation Molecular chains Organic chemistry quantum chemical calculation Quantum chemistry |
| Title | A Reaction‐Induced Localization of Spin Density Enables Thermal C−H Bond Activation of Methane by Pristine FeC4 |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201902572 https://www.proquest.com/docview/2301920524 https://www.proquest.com/docview/2251700152 https://pubmed.ncbi.nlm.nih.gov/PMC6852486 |
| Volume | 25 |
| WOSCitedRecordID | wos000480848400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6CXrxW5xOieC12KVpkx7H5thBx_ADditJmupAumGn4M2jR_FP9C_xvbarzqNeSkqStulLXn4vyfs9Qk59X_khB7NEWc9zeMt1ndBlyjHGxMYkXEuh82ATYjCQo1E4_OHFX_BDVAtuODJyfY0DXOns7Js0FNqEnuQt3CcToITr6FkF5le9e9W7vfgm3g3KcPJcOEjDOidudNnZ4hMWIObvA5I_gWs-8_Q2_v_Nm2S9RJ20XXSTLbJk022y2pkHe9shWZte2cLH4fP1HeN5GBvTC5zoSkdNOkno9XSc0i4eeZ-90PPc6yqj0NFAuT_QzufbR59imGLaNvOgaVjr0uLyvKX6hQ5zlQLpnu3wXXLbO7_p9J0yHoNz54UAxEPhJVyBxWVAK2kreGxbsaeV5FoJqYKAxyy0vrFKGS0SbkDT6pb2NIBSKb3Y2yO1dJLafUKRaM5YDtanr7kfK-VrmWhAm65JEsWCBmnOhRGVgyqLwFrCEj7jDXJSZcOPwj0OaMfkCcogBRsCQdYgYkGI0bSg74iQUHsxJx3f58TagYRnS3g5y4VY1SionVmE4osq8UVIWlHdHfyl0iFZw3RxprBJarPHJ3tEVszzbJw9HpNlxodwFSN5XHbrLxbv-1Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QII0Lb8R4BolrtS5Nm_Q4DaYhxjTBkHarkjSFSaib2EDixpEj4ifyS7DbrjCOiFvbxE1TJ46d2J8JOfV95YcczBJlPc_hddd1QpcpxxgTG5NwLYXOkk2IblcOBmGv8CbEWJgcH6LccMOZkclrnOC4IV37Rg2FTmEoeR0PygRI4SUOSxN69THe-8bdDYps8lw4iMI6w210WW2efk7D_O0f-VNvzRae1to_fPI6WS20TtrIh8kGWbDpJqk0Z8netsikQa9tHuPw-fqO-TyMjWkHF7oiUJOOEnozHqb0DF3epy_0PIu6mlAYaCDcH2jz8-2jTTFNMW2YWdI0pLqyuD1vqX6hvUykwHXLNvk2uW2d95ttp8jH4Nx5ISjiofASrsDiMiCVtBU8tvXY00pyrYRUQcBjFlrfWKWMFgk3IGl1XXsalFIpvdjbIYvpKLW7hCLQnLEcrE9fcz9Wytcy0aBtuiZJFAuq5GDGjaiYVJMIrCWs4TNeJSdlMfwoPOOAfoyeoA5CsKEiyKpEzHExGufwHRECas-XpMP7DFg7kPBuCY2zjIslRQ7tzCJkX1SyL0LQivJu7y9Ex6TS7l91os5F93KfrODz3L_wgCxOH5_sIVk2z9Ph5PEoG9Vfsa776g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZQFy1cgF1YUSiskfYaNXXs2DlW_VERpaqAlXqLbMfZrbRKq22L1BtHjmgfsU_CjJOmlCPilsSZJM54xjP2zDeEXAmhRcLBLdEuigLeCcMgCZkOrLWZtTk3ShpfbEJOJmo2S6ZVNCHmwpT4EPWCG0qG19co4G6Z5e0Daih0ClPJO7hRJkELn3AhvWwyPj3g7sZVNXkuA0Rh3eM2hqx9TH9kYf4dH_mn3eonnuHz__DJL8izyuqk3XKYnJFHrjgnT3r7Ym8vyapLv7gyx2H34xfW87Auo2Oc6KpETbrI6dflvKB9DHlfb-nAZ12tKAw0UO53tLf7-TCiWKaYdu2-aBpSfXa4PO-o2dKpVylwPHQ9_opcDwffeqOgqscQ3EQJGOKJjHKuweOyoJWMkzxznSwyWnGjpdJxzDOWOGGd1tbInFvQtKZjIgNGqVJRFl2QRrEo3GtCEWjOOg7epzBcZFoLo3ID1mZo81yzuElae26klVCtUvCW8A7BeJN8qJvhR-EeB_RjsYF7EIINDUHWJPKIi-myhO9IEVD7uKWY33pg7VjBsxW8nHku1hQltDNLkX1pzb4UQSvqszf_QnRJTqf9YTr-OPn0ljzFy2V4YYs01vcb9448tt_X89X9ez-ofwNDzftl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Reaction%E2%80%90Induced+Localization+of+Spin+Density+Enables+Thermal+C%E2%88%92H+Bond+Activation+of+Methane+by+Pristine+FeC4&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Geng%2C+Caiyun&rft.au=Li%2C+Jilai&rft.au=Weiske%2C+Thomas&rft.au=Schwarz%2C+Helmut&rft.date=2019-10-08&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=25&rft.issue=56&rft.spage=12940&rft.epage=12945&rft_id=info:doi/10.1002%2Fchem.201902572&rft_id=info%3Apmid%2F31268193&rft.externalDocID=PMC6852486 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |