A Reaction‐Induced Localization of Spin Density Enables Thermal C−H Bond Activation of Methane by Pristine FeC4

The reactivity of the cationic metal‐carbon cluster FeC4+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass spectrometry and computationally by high‐level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal Jg. 25; H. 56; S. 12940 - 12945
Hauptverfasser: Geng, Caiyun, Li, Jilai, Weiske, Thomas, Schwarz, Helmut
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim Wiley Subscription Services, Inc 08.10.2019
John Wiley and Sons Inc
Schlagworte:
ISSN:0947-6539, 1521-3765, 1521-3765
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The reactivity of the cationic metal‐carbon cluster FeC4+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass spectrometry and computationally by high‐level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C−H bond activation step proceeds through a radical‐based hydrogen‐atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4+, which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp‐orbital of the terminal carbon atom of FeC4+ migrates to the singly occupied π*‐orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C−H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed‐shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition‐metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen‐atom transfer. Getting together: Radical‐type hydrogen‐atom transfer transpires by localized spin density generated in situ once the reaction partners approach each other.
AbstractList The reactivity of the cationic metal‐carbon cluster FeC4 + towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass spectrometry and computationally by high‐level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C−H bond activation step proceeds through a radical‐based hydrogen‐atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4 +, which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp‐orbital of the terminal carbon atom of FeC4 + migrates to the singly occupied π*‐orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C−H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed‐shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition‐metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen‐atom transfer. Getting together: Radical‐type hydrogen‐atom transfer transpires by localized spin density generated in situ once the reaction partners approach each other.
The reactivity of the cationic metal‐carbon cluster FeC4+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass spectrometry and computationally by high‐level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C−H bond activation step proceeds through a radical‐based hydrogen‐atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4+, which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp‐orbital of the terminal carbon atom of FeC4+ migrates to the singly occupied π*‐orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C−H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed‐shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition‐metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen‐atom transfer.
The reactivity of the cationic metal-carbon cluster FeC4 + towards methane has been studied experimentally using Fourier-transform ion cyclotron resonance mass spectrometry and computationally by high-level quantum chemical calculations. At room temperature, FeC4 H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C-H bond activation step proceeds through a radical-based hydrogen-atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4 + , which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp-orbital of the terminal carbon atom of FeC4 + migrates to the singly occupied π*-orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C-H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed-shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition-metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen-atom transfer.The reactivity of the cationic metal-carbon cluster FeC4 + towards methane has been studied experimentally using Fourier-transform ion cyclotron resonance mass spectrometry and computationally by high-level quantum chemical calculations. At room temperature, FeC4 H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C-H bond activation step proceeds through a radical-based hydrogen-atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4 + , which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp-orbital of the terminal carbon atom of FeC4 + migrates to the singly occupied π*-orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C-H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed-shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition-metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen-atom transfer.
The reactivity of the cationic metal‐carbon cluster FeC4+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass spectrometry and computationally by high‐level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C−H bond activation step proceeds through a radical‐based hydrogen‐atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4+, which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp‐orbital of the terminal carbon atom of FeC4+ migrates to the singly occupied π*‐orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C−H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed‐shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition‐metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen‐atom transfer. Getting together: Radical‐type hydrogen‐atom transfer transpires by localized spin density generated in situ once the reaction partners approach each other.
Author Schwarz, Helmut
Li, Jilai
Geng, Caiyun
Weiske, Thomas
AuthorAffiliation 1 Institute of Theoretical Chemistry Jilin University 130023 Changchun P. R. China
2 Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
AuthorAffiliation_xml – name: 1 Institute of Theoretical Chemistry Jilin University 130023 Changchun P. R. China
– name: 2 Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
Author_xml – sequence: 1
  givenname: Caiyun
  orcidid: 0000-0003-1451-9885
  surname: Geng
  fullname: Geng, Caiyun
  organization: Technische Universität Berlin
– sequence: 2
  givenname: Jilai
  orcidid: 0000-0002-3363-9164
  surname: Li
  fullname: Li, Jilai
  email: Jilai@jlu.edu.cn
  organization: Technische Universität Berlin
– sequence: 3
  givenname: Thomas
  orcidid: 0000-0003-4756-2548
  surname: Weiske
  fullname: Weiske, Thomas
  organization: Technische Universität Berlin
– sequence: 4
  givenname: Helmut
  orcidid: 0000-0002-3369-7997
  surname: Schwarz
  fullname: Schwarz, Helmut
  email: Helmut.Schwarz@tu-berlin.de
  organization: Technische Universität Berlin
BookMark eNpdkU1v0zAchy00xLrBlbMlLlwy_JI49gWphG6d1AkE42zZzr-rp8QucTJUThx3RHzEfRJcbaoEJ789fuSffyfoKMQACL2m5IwSwt65DfRnjFBFWFWzZ2hGK0YLXovqCM2IKutCVFwdo5OUbgkhSnD-Ah1zyoSkis9QmuMvYNzoY3j49fsytJODFq-iM53_afbbOK7x160P-COE5McdXgRjO0j4egNDbzrcPNz_WeIPMbR4nkV3h1tXMG5MAGx3-PPg0-jz_Bya8iV6vjZdgldP4yn6dr64bpbF6tPFZTNfFTdcSVaomq9LI6hyOY6FumyBttwaWVpTSyNE2TIFlQNjnK3XpZMZo5ZbSYiUvOWn6P2jdzvZHloHYRxMp7eD782w09F4_e9J8Bt9E--0kBUrpciCt0-CIX6fII2698lB1-VUcUqasYrWhOQvz-ib_9DbOA0hx9OM53oYycpMqUfqh-9gd3gJJXpfpt6XqQ9l6ma5uDqs-F9_nZgD
ContentType Journal Article
Copyright 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
DOI 10.1002/chem.201902572
DatabaseName Wiley Online Library Open Access
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 12945
ExternalDocumentID PMC6852486
CHEM201902572
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21473070 and 21773085
– fundername: Deutsche Forschungsgemeinschaft
  funderid: EXC/314-1
– fundername: Fonds der Chemischen Industrie
  funderid: 160 187
– fundername: ;
  grantid: 21473070 and 21773085
– fundername: ;
  grantid: EXC/314-1
– fundername: Fonds der Chemischen Industrie
  grantid: 160 187
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
7SR
8BQ
8FD
AEYWJ
AGHNM
AGYGG
JG9
K9.
7X8
5PM
ID FETCH-LOGICAL-g3982-973f4a619c376be74de1d3ba84ba78a664d29e5ceaacb7f4c876b1b3b800883d3
IEDL.DBID DRFUL
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480848400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Tue Sep 30 16:51:29 EDT 2025
Fri Jul 11 12:05:40 EDT 2025
Tue Oct 07 06:50:36 EDT 2025
Wed Jan 22 16:39:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 56
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3982-973f4a619c376be74de1d3ba84ba78a664d29e5ceaacb7f4c876b1b3b800883d3
Notes th
This article is dedicated to Professor Yitzhak Apeloig on the occasion of his 75
birthday.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article is dedicated to Professor Yitzhak Apeloig on the occasion of his 75th birthday.
ORCID 0000-0002-3363-9164
0000-0002-3369-7997
0000-0003-4756-2548
0000-0003-1451-9885
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201902572
PMID 31268193
PQID 2301920524
PQPubID 986340
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6852486
proquest_miscellaneous_2251700152
proquest_journals_2301920524
wiley_primary_10_1002_chem_201902572_CHEM201902572
PublicationCentury 2000
PublicationDate October 8, 2019
PublicationDateYYYYMMDD 2019-10-08
PublicationDate_xml – month: 10
  year: 2019
  text: October 8, 2019
  day: 08
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1973; 181
1971; 27
2009; 281
1973; 58
2000; 318
2015; 629
1995
2008; 105
2019; 141
2017; 139
2006 2006; 45 118
2014; 5
2016 2016; 55 128
2011; 108
2005; 244
2017; 16
2012 2012; 51 124
2005; 105
2018; 554
2015; 87
2011; 44
2015 2015; 54 127
2018; 51
2015
2016; 138
1999; 71
2010; 2
2012; 45
1972; 56
1966; 66
2014; 54
1955; 77
2014; 344
References_xml – volume: 281
  start-page: 63
  year: 2009
  end-page: 71
  publication-title: Int. J. Mass Spectrom.
– volume: 181
  start-page: 547
  year: 1973
  end-page: 549
  publication-title: Science
– volume: 139
  start-page: 17201
  year: 2017
  end-page: 17212
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 13072 13266
  year: 2016 2016
  end-page: 13075 13269
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58
  start-page: 3027
  year: 1973
  end-page: 3037
  publication-title: J. Chem. Phys.
– volume: 344
  start-page: 616
  year: 2014
  end-page: 619
  publication-title: Science
– volume: 629
  start-page: 91
  year: 2015
  end-page: 101
  publication-title: Chem. Phys. Lett.
– volume: 554
  start-page: 86
  year: 2018
  end-page: 91
  publication-title: Nature
– volume: 51
  start-page: 2382
  year: 2018
  end-page: 2390
  publication-title: Acc. Chem. Res.
– volume: 138
  start-page: 4237
  year: 2016
  end-page: 4242
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 1975
  year: 2018
  end-page: 1983
  publication-title: Acc. Chem. Res.
– volume: 77
  start-page: 334
  year: 1955
  end-page: 338
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 36
  year: 2011
  end-page: 46
  publication-title: Acc. Chem. Res.
– volume: 51
  start-page: 2391
  year: 2018
  end-page: 2399
  publication-title: Acc. Chem. Res.
– volume: 139
  start-page: 1684
  year: 2017
  end-page: 1689
  publication-title: J. Am. Chem. Soc.
– volume: 71
  start-page: 1253
  year: 1999
  end-page: 1266
  publication-title: Rev. Mod. Phys.
– volume: 27
  start-page: 1329
  year: 1971
  end-page: 1332
  publication-title: Phys. Rev. Lett.
– volume: 54 127
  start-page: 5074 5163
  year: 2015 2015
  end-page: 5078 5167
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 5783
  year: 2014
  publication-title: Nat. Commun.
– volume: 51
  start-page: 2006
  year: 2018
  end-page: 2013
  publication-title: Acc. Chem. Res.
– volume: 51
  start-page: 2603
  year: 2018
  end-page: 2610
  publication-title: Acc. Chem. Res.
– volume: 54
  start-page: 1413
  year: 2014
  end-page: 1431
  publication-title: Isr. J. Chem.
– volume: 45 118
  start-page: 4681 4797
  year: 2006 2006
  end-page: 4685 4801
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 7973
  year: 2016
  end-page: 7981
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 1228
  year: 2011
  end-page: 1233
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 51 124
  start-page: 5556 5652
  year: 2012 2012
  end-page: 5578 5676
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56
  start-page: 4711
  year: 1972
  end-page: 4712
  publication-title: J. Chem. Phys.
– volume: 87
  start-page: 897
  year: 2015
  end-page: 923
  publication-title: Rev. Mod. Phys.
– volume: 105
  start-page: 18114
  year: 2008
  end-page: 18119
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 318
  start-page: 149
  year: 2000
  end-page: 154
  publication-title: Chem. Phys. Lett.
– volume: 45 118
  start-page: 5705 5835
  year: 2006 2006
  end-page: 5708 5838
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 10090 10228
  year: 2015 2015
  end-page: 10100 10239
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 1995
– volume: 51
  start-page: 2601
  year: 2018
  end-page: 2602
  publication-title: Acc. Chem. Res.
– volume: 51
  start-page: 107
  year: 2018
  end-page: 117
  publication-title: Acc. Chem. Res.
– volume: 105
  start-page: 185
  year: 2005
  end-page: 212
  publication-title: Chem. Rev.
– volume: 45
  start-page: 382
  year: 2012
  end-page: 390
  publication-title: Acc. Chem. Res.
– volume: 66
  start-page: 465
  year: 1966
  end-page: 500
  publication-title: Chem. Rev.
– volume: 244
  start-page: 84
  year: 2005
  end-page: 90
  publication-title: Int. J. Mass Spectrom.
– volume: 51 124
  start-page: 5544 5638
  year: 2012 2012
  end-page: 5555 5650
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 11368
  year: 2016
  end-page: 11377
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 225
  year: 2017
  end-page: 229
  publication-title: Nat. Mater.
– year: 2015
– volume: 2
  start-page: 819
  year: 2010
  end-page: 826
  publication-title: ChemCatChem
– volume: 141
  start-page: 4487
  year: 2019
  publication-title: J. Am. Chem. Soc.
SSID ssj0009633
Score 2.4063978
Snippet The reactivity of the cationic metal‐carbon cluster FeC4+ towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass...
The reactivity of the cationic metal-carbon cluster FeC4 + towards methane has been studied experimentally using Fourier-transform ion cyclotron resonance mass...
The reactivity of the cationic metal‐carbon cluster FeC4 + towards methane has been studied experimentally using Fourier‐transform ion cyclotron resonance mass...
SourceID pubmedcentral
proquest
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 12940
SubjectTerms Carbon
Chemistry
Computer applications
Cyclotron resonance
Density
gas-phase reaction
Hydrogen
Hydrogen bonds
hydrogen-atom transfer
Localization
Mass spectrometry
Mass spectroscopy
Mathematical analysis
metal carbide
Metal carbides
Methane
methane activation
Molecular chains
Organic chemistry
quantum chemical calculation
Quantum chemistry
Title A Reaction‐Induced Localization of Spin Density Enables Thermal C−H Bond Activation of Methane by Pristine FeC4
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201902572
https://www.proquest.com/docview/2301920524
https://www.proquest.com/docview/2251700152
https://pubmed.ncbi.nlm.nih.gov/PMC6852486
Volume 25
WOSCitedRecordID wos000480848400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6CXrxW5xOieC12KVpkx7H5thBx_ADditJmupAumGn4M2jR_FP9C_xvbarzqNeSkqStulLXn4vyfs9Qk59X_khB7NEWc9zeMt1ndBlyjHGxMYkXEuh82ATYjCQo1E4_OHFX_BDVAtuODJyfY0DXOns7Js0FNqEnuQt3CcToITr6FkF5le9e9W7vfgm3g3KcPJcOEjDOidudNnZ4hMWIObvA5I_gWs-8_Q2_v_Nm2S9RJ20XXSTLbJk022y2pkHe9shWZte2cLH4fP1HeN5GBvTC5zoSkdNOkno9XSc0i4eeZ-90PPc6yqj0NFAuT_QzufbR59imGLaNvOgaVjr0uLyvKX6hQ5zlQLpnu3wXXLbO7_p9J0yHoNz54UAxEPhJVyBxWVAK2kreGxbsaeV5FoJqYKAxyy0vrFKGS0SbkDT6pb2NIBSKb3Y2yO1dJLafUKRaM5YDtanr7kfK-VrmWhAm65JEsWCBmnOhRGVgyqLwFrCEj7jDXJSZcOPwj0OaMfkCcogBRsCQdYgYkGI0bSg74iQUHsxJx3f58TagYRnS3g5y4VY1SionVmE4osq8UVIWlHdHfyl0iFZw3RxprBJarPHJ3tEVszzbJw9HpNlxodwFSN5XHbrLxbv-1Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QII0Lb8R4BolrtS5Nm_Q4DaYhxjTBkHarkjSFSaib2EDixpEj4ifyS7DbrjCOiFvbxE1TJ46d2J8JOfV95YcczBJlPc_hddd1QpcpxxgTG5NwLYXOkk2IblcOBmGv8CbEWJgcH6LccMOZkclrnOC4IV37Rg2FTmEoeR0PygRI4SUOSxN69THe-8bdDYps8lw4iMI6w210WW2efk7D_O0f-VNvzRae1to_fPI6WS20TtrIh8kGWbDpJqk0Z8netsikQa9tHuPw-fqO-TyMjWkHF7oiUJOOEnozHqb0DF3epy_0PIu6mlAYaCDcH2jz8-2jTTFNMW2YWdI0pLqyuD1vqX6hvUykwHXLNvk2uW2d95ttp8jH4Nx5ISjiofASrsDiMiCVtBU8tvXY00pyrYRUQcBjFlrfWKWMFgk3IGl1XXsalFIpvdjbIYvpKLW7hCLQnLEcrE9fcz9Wytcy0aBtuiZJFAuq5GDGjaiYVJMIrCWs4TNeJSdlMfwoPOOAfoyeoA5CsKEiyKpEzHExGufwHRECas-XpMP7DFg7kPBuCY2zjIslRQ7tzCJkX1SyL0LQivJu7y9Ex6TS7l91os5F93KfrODz3L_wgCxOH5_sIVk2z9Ph5PEoG9Vfsa776g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZQFy1cgF1YUSiskfYaNXXs2DlW_VERpaqAlXqLbMfZrbRKq22L1BtHjmgfsU_CjJOmlCPilsSZJM54xjP2zDeEXAmhRcLBLdEuigLeCcMgCZkOrLWZtTk3ShpfbEJOJmo2S6ZVNCHmwpT4EPWCG0qG19co4G6Z5e0Daih0ClPJO7hRJkELn3AhvWwyPj3g7sZVNXkuA0Rh3eM2hqx9TH9kYf4dH_mn3eonnuHz__DJL8izyuqk3XKYnJFHrjgnT3r7Ym8vyapLv7gyx2H34xfW87Auo2Oc6KpETbrI6dflvKB9DHlfb-nAZ12tKAw0UO53tLf7-TCiWKaYdu2-aBpSfXa4PO-o2dKpVylwPHQ9_opcDwffeqOgqscQ3EQJGOKJjHKuweOyoJWMkzxznSwyWnGjpdJxzDOWOGGd1tbInFvQtKZjIgNGqVJRFl2QRrEo3GtCEWjOOg7epzBcZFoLo3ID1mZo81yzuElae26klVCtUvCW8A7BeJN8qJvhR-EeB_RjsYF7EIINDUHWJPKIi-myhO9IEVD7uKWY33pg7VjBsxW8nHku1hQltDNLkX1pzb4UQSvqszf_QnRJTqf9YTr-OPn0ljzFy2V4YYs01vcb9448tt_X89X9ez-ofwNDzftl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Reaction%E2%80%90Induced+Localization+of+Spin+Density+Enables+Thermal+C%E2%88%92H+Bond+Activation+of+Methane+by+Pristine+FeC4&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Geng%2C+Caiyun&rft.au=Li%2C+Jilai&rft.au=Weiske%2C+Thomas&rft.au=Schwarz%2C+Helmut&rft.date=2019-10-08&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=25&rft.issue=56&rft.spage=12940&rft.epage=12945&rft_id=info:doi/10.1002%2Fchem.201902572&rft_id=info%3Apmid%2F31268193&rft.externalDocID=PMC6852486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon