Morphology‐Engineered Highly Active and Stable Ru/TiO2 Catalysts for Selective CO Methanation

Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2‐ and H2‐rich reformates, but suffer from continuous deactivation during reaction. This limitation can be overcome through the fabrication of highly active and non‐deactivating Ru/TiO2 catalysts by engi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie International Edition Ročník 58; číslo 31; s. 10732 - 10736
Hlavní autoři: Chen, Shilong, Abdel‐Mageed, Ali M., Li, Dan, Bansmann, Joachim, Cisneros, Sebastian, Biskupek, Johannes, Huang, Weixin, Behm, R. Jürgen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 29.07.2019
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2‐ and H2‐rich reformates, but suffer from continuous deactivation during reaction. This limitation can be overcome through the fabrication of highly active and non‐deactivating Ru/TiO2 catalysts by engineering the morphology of the TiO2 support. Using anatase TiO2 nanocrystals with mainly {001}, {100}, or {101} facets exposed, we show that after an initial activation period Ru/TiO2‐{100} and Ru/TiO2‐{101} are very stable, while Ru/TiO2‐{001} deactivates continuously. Employing different operando/in situ spectroscopies and ex situ characterizations, we show that differences in the catalytic stability are related to differences in the metal–support interactions (MSIs). The stronger MSIs on the defect‐rich TiO2‐{100} and TiO2‐{101} supports stabilize flat Ru nanoparticles, while on TiO2‐{001} hemispherical particles develop. The former MSIs also lead to electronic modifications of Ru surface atoms, reflected by the stronger bonding of adsorbed CO on those catalysts than on Ru/TiO2‐{001}. Keeping it flat: Morphology‐engineered TiO2‐{100} and TiO2‐{101} nanocrystal supports can stabilize flat Ru nanoparticles, resulting in a very stable activity of the Ru/TiO2 catalysts for the selective CO methanation. Weaker metal–support interactions on the TiO2‐{001} nanocrystals result in a shape change of the Ru nanoparticles, from flat to hemispherical, together with continuous deactivation.
AbstractList Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2‐ and H2‐rich reformates, but suffer from continuous deactivation during reaction. This limitation can be overcome through the fabrication of highly active and non‐deactivating Ru/TiO2 catalysts by engineering the morphology of the TiO2 support. Using anatase TiO2 nanocrystals with mainly {001}, {100}, or {101} facets exposed, we show that after an initial activation period Ru/TiO2‐{100} and Ru/TiO2‐{101} are very stable, while Ru/TiO2‐{001} deactivates continuously. Employing different operando/in situ spectroscopies and ex situ characterizations, we show that differences in the catalytic stability are related to differences in the metal–support interactions (MSIs). The stronger MSIs on the defect‐rich TiO2‐{100} and TiO2‐{101} supports stabilize flat Ru nanoparticles, while on TiO2‐{001} hemispherical particles develop. The former MSIs also lead to electronic modifications of Ru surface atoms, reflected by the stronger bonding of adsorbed CO on those catalysts than on Ru/TiO2‐{001}. Keeping it flat: Morphology‐engineered TiO2‐{100} and TiO2‐{101} nanocrystal supports can stabilize flat Ru nanoparticles, resulting in a very stable activity of the Ru/TiO2 catalysts for the selective CO methanation. Weaker metal–support interactions on the TiO2‐{001} nanocrystals result in a shape change of the Ru nanoparticles, from flat to hemispherical, together with continuous deactivation.
Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2 and H2-rich reformates, but suffer from continuous deactivation during reaction. Here we report on a successful attempt to overcome this limitation, fabricating highly active and non-deactivating Ru/TiO2 catalysts by morphology-engineering of the TiO2 support. Using anatase TiO2 nanocrystals with mainly {001}, {100} or {101} facets exposed, we show that after an initial activation period Ru/TiO2-{100} and Ru/TiO2-{101} are very stable, while Ru/TiO2-{001} deactivates continuously. Employing different operando / in situ spectroscopies and ex situ characterizations, we show that differences in the catalytic stability are related to differences in the metal-support interactions (MSIs). The stronger MSIs on the defect-rich TiO2-{100} and TiO2-{101} supports not only stabilize flat Ru nanoparticles, while on TiO2-{001} hemispherical particles develop, but also lead to electronic modifications of Ru surface atoms, reflected by a stronger bonding of adsorbed CO on those catalysts than on Ru/TiO2-{001}. Consequences for the performance of these catalysts are discussed.
Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2 - and H2 -rich reformates, but suffer from continuous deactivation during reaction. This limitation can be overcome through the fabrication of highly active and non-deactivating Ru/TiO2 catalysts by engineering the morphology of the TiO2 support. Using anatase TiO2 nanocrystals with mainly {001}, {100}, or {101} facets exposed, we show that after an initial activation period Ru/TiO2 -{100} and Ru/TiO2 -{101} are very stable, while Ru/TiO2 -{001} deactivates continuously. Employing different operando/in situ spectroscopies and ex situ characterizations, we show that differences in the catalytic stability are related to differences in the metal-support interactions (MSIs). The stronger MSIs on the defect-rich TiO2 -{100} and TiO2 -{101} supports stabilize flat Ru nanoparticles, while on TiO2 -{001} hemispherical particles develop. The former MSIs also lead to electronic modifications of Ru surface atoms, reflected by the stronger bonding of adsorbed CO on those catalysts than on Ru/TiO2 -{001}.Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2 - and H2 -rich reformates, but suffer from continuous deactivation during reaction. This limitation can be overcome through the fabrication of highly active and non-deactivating Ru/TiO2 catalysts by engineering the morphology of the TiO2 support. Using anatase TiO2 nanocrystals with mainly {001}, {100}, or {101} facets exposed, we show that after an initial activation period Ru/TiO2 -{100} and Ru/TiO2 -{101} are very stable, while Ru/TiO2 -{001} deactivates continuously. Employing different operando/in situ spectroscopies and ex situ characterizations, we show that differences in the catalytic stability are related to differences in the metal-support interactions (MSIs). The stronger MSIs on the defect-rich TiO2 -{100} and TiO2 -{101} supports stabilize flat Ru nanoparticles, while on TiO2 -{001} hemispherical particles develop. The former MSIs also lead to electronic modifications of Ru surface atoms, reflected by the stronger bonding of adsorbed CO on those catalysts than on Ru/TiO2 -{001}.
Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2‐ and H2‐rich reformates, but suffer from continuous deactivation during reaction. This limitation can be overcome through the fabrication of highly active and non‐deactivating Ru/TiO2 catalysts by engineering the morphology of the TiO2 support. Using anatase TiO2 nanocrystals with mainly {001}, {100}, or {101} facets exposed, we show that after an initial activation period Ru/TiO2‐{100} and Ru/TiO2‐{101} are very stable, while Ru/TiO2‐{001} deactivates continuously. Employing different operando/in situ spectroscopies and ex situ characterizations, we show that differences in the catalytic stability are related to differences in the metal–support interactions (MSIs). The stronger MSIs on the defect‐rich TiO2‐{100} and TiO2‐{101} supports stabilize flat Ru nanoparticles, while on TiO2‐{001} hemispherical particles develop. The former MSIs also lead to electronic modifications of Ru surface atoms, reflected by the stronger bonding of adsorbed CO on those catalysts than on Ru/TiO2‐{001}.
Author Chen, Shilong
Li, Dan
Bansmann, Joachim
Abdel‐Mageed, Ali M.
Huang, Weixin
Behm, R. Jürgen
Biskupek, Johannes
Cisneros, Sebastian
Author_xml – sequence: 1
  givenname: Shilong
  surname: Chen
  fullname: Chen, Shilong
  organization: Ulm University
– sequence: 2
  givenname: Ali M.
  orcidid: 0000-0003-4160-0611
  surname: Abdel‐Mageed
  fullname: Abdel‐Mageed, Ali M.
  organization: Ulm University
– sequence: 3
  givenname: Dan
  surname: Li
  fullname: Li, Dan
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Joachim
  orcidid: 0000-0003-3205-7450
  surname: Bansmann
  fullname: Bansmann, Joachim
  organization: Ulm University
– sequence: 5
  givenname: Sebastian
  surname: Cisneros
  fullname: Cisneros, Sebastian
  organization: Ulm University
– sequence: 6
  givenname: Johannes
  orcidid: 0000-0002-0964-3200
  surname: Biskupek
  fullname: Biskupek, Johannes
  organization: Ulm University
– sequence: 7
  givenname: Weixin
  orcidid: 0000-0002-5025-3124
  surname: Huang
  fullname: Huang, Weixin
  email: huangwx@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 8
  givenname: R. Jürgen
  orcidid: 0000-0002-7565-0628
  surname: Behm
  fullname: Behm, R. Jürgen
  email: juergen.behm@uni-ulm.de
  organization: Ulm University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31095821$$D View this record in MEDLINE/PubMed
BookMark eNpd0c1OGzEQB3ALgYBArz1WlnrhsmCP17v2MYrSEokQCejZctaTxMix0_2g2huP0Gfsk3RR0hx68ljz02g0_xE5jSkiIZ85u-WMwZ2NHm-Bcc2EUnBCLrkEnomyFKdDnQuRlUryCzJqmtfBK8WKc3IhONNSAb8kZp7q3SaFtO7_vP-exrWPiDU6eu_Xm9DTcdX6N6Q2Ovrc2mVA-tTdvfgF0IltbeibtqGrVNNnDLinkwWdY7ux0bY-xWtytrKhwU-H94r8-DZ9mdxnD4vvs8n4IVsLDZBxqFxRaAel1GJZOc20YrlWoKs8VxorVdlclhKWKHiOLneqXBWW54BS8tKJK3Kzn7ur088Om9ZsfVNhCDZi6hoDIIDJsmBqoF__o6-pq-Ow3aAKKJSWQgzqy0F1yy06s6v91ta9-Xe6Aeg9-OUD9sc-Z-YjGPMRjDkGY8aPs-nxJ_4CxdKCCg
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
7TM
K9.
7X8
DOI 10.1002/anie.201903882
DatabaseName PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 10736
ExternalDocumentID 31095821
ANIE201903882
Genre shortCommunication
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
ABJNI
AGHNM
NPM
7TM
ABDBF
ABUFD
AEYWJ
AGYGG
K9.
O8X
7X8
ID FETCH-LOGICAL-g3922-12cd669d27593bcd9098049829c4489ec8ca45752be314ed4d87f6a142e5517d3
IEDL.DBID DRFUL
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476919100057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Sun Nov 09 13:57:42 EST 2025
Sat Nov 29 15:08:19 EST 2025
Thu Apr 03 06:55:55 EDT 2025
Wed Jan 22 16:41:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords Morphology engineering, stability, particle shape, metal-support interactions, CO methanation
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3922-12cd669d27593bcd9098049829c4489ec8ca45752be314ed4d87f6a142e5517d3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5025-3124
0000-0002-7565-0628
0000-0003-3205-7450
0000-0003-4160-0611
0000-0002-0964-3200
PMID 31095821
PQID 2262689533
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2232057608
proquest_journals_2262689533
pubmed_primary_31095821
wiley_primary_10_1002_anie_201903882_ANIE201903882
PublicationCentury 2000
PublicationDate July 29, 2019
PublicationDateYYYYMMDD 2019-07-29
PublicationDate_xml – month: 07
  year: 2019
  text: July 29, 2019
  day: 29
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 88
2015; 5
2004; 29
2010; 269
2018; 368
2015; 143
2006; 110
2011; 54
2016; 341
2010 2010; 49 122
2009; 131
1999; 1
2003; 50
1998; 176
2015; 8
2013; 6
2015; 7
2016; 120
2019 2019; 58 131
2010; 65
2018; 8
2015; 137
2012 2012; 51 124
2013; 117
2013; 135
2016; 335
2016; 49
2019; 373
References_xml – volume: 135
  start-page: 6107
  year: 2013
  end-page: 6121
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 39
  year: 2003
  end-page: 46
  publication-title: Chemosphere
– volume: 7
  start-page: 3290
  year: 2015
  end-page: 3298
  publication-title: ChemCatChem
– volume: 137
  start-page: 8672
  year: 2015
  end-page: 8675
  publication-title: J. Am. Chem. Soc.
– volume: 335
  start-page: 79
  year: 2016
  end-page: 94
  publication-title: J. Catal.
– volume: 58 131
  start-page: 4276 4320
  year: 2019 2019
  end-page: 4280 4324
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 120
  start-page: 21472
  year: 2016
  end-page: 21485
  publication-title: J. Phys. Chem. C
– volume: 143
  start-page: 138
  year: 2015
  end-page: 153
  publication-title: Appl. Energy
– volume: 368
  start-page: 163
  year: 2018
  end-page: 171
  publication-title: J. Catal.
– volume: 117
  start-page: 18578
  year: 2013
  end-page: 18587
  publication-title: J. Phys. Chem. C
– volume: 49 122
  start-page: 9895 10091
  year: 2010 2010
  end-page: 9898 10094
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 341
  start-page: 126
  year: 2016
  end-page: 135
  publication-title: J. Catal.
– volume: 269
  start-page: 255
  year: 2010
  end-page: 268
  publication-title: J. Catal.
– volume: 54
  start-page: 1042
  year: 2011
  end-page: 1053
  publication-title: Top. Catal.
– volume: 49
  start-page: 520
  year: 2016
  end-page: 527
  publication-title: Acc. Chem. Res.
– volume: 131
  start-page: 12230
  year: 2009
  end-page: 12239
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1821
  year: 2013
  end-page: 1833
  publication-title: ChemSusChem
– volume: 65
  start-page: 590
  year: 2010
  end-page: 596
  publication-title: Chem. Eng. Sci.
– volume: 51 124
  start-page: 602 622
  year: 2012 2012
  end-page: 613 635
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 4059
  year: 1999
  end-page: 4063
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 5399
  year: 2018
  end-page: 5414
  publication-title: ACS Catal.
– volume: 373
  start-page: 103
  year: 2019
  end-page: 115
  publication-title: J. Catal.
– volume: 176
  start-page: 415
  year: 1998
  end-page: 425
  publication-title: J. Catal.
– volume: 29
  start-page: 1065
  year: 2004
  end-page: 1073
  publication-title: Int. J. Hydrogen Energy
– volume: 88
  start-page: 470
  year: 2009
  end-page: 478
  publication-title: Appl. Catal. B
– volume: 131
  start-page: 3152
  year: 2009
  end-page: 3153
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 6753
  year: 2015
  end-page: 6763
  publication-title: ACS Catal.
– volume: 110
  start-page: 5223
  year: 2006
  end-page: 5229
  publication-title: J. Phys. Chem. B
– volume: 8
  start-page: 3869
  year: 2015
  end-page: 3881
  publication-title: ChemSusChem
SSID ssj0028806
Score 2.5893521
Snippet Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2‐ and H2‐rich reformates, but suffer from continuous...
Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2 and H2-rich reformates, but suffer from continuous...
Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2 - and H2 -rich reformates, but suffer from continuous...
SourceID proquest
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 10732
SubjectTerms Anatase
Bonding strength
Carbon dioxide
Carbon monoxide
Catalysis
Catalysts
CO methanation
Deactivation
Fabrication
metal–support interactions
Methanation
Morphology
morphology engineering
Nanocrystals
Nanoparticles
particle shape
Ru/TiO2
Titanium dioxide
Title Morphology‐Engineered Highly Active and Stable Ru/TiO2 Catalysts for Selective CO Methanation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201903882
https://www.ncbi.nlm.nih.gov/pubmed/31095821
https://www.proquest.com/docview/2262689533
https://www.proquest.com/docview/2232057608
Volume 58
WOSCitedRecordID wos000476919100057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60Cnrx_agvVvAamu6mye6xVItCW8UH9BY2uxsRJBXTCt78Cf5Gf4kzSRsVPOktYTchzMxOvpnd-QbgxG_5gXNCeTJIhBcoX3maa-m5KCIuPK1auigU7kWDgRwO1dW3Kv6SH6JKuNHKKPw1LXCd5I0v0lCqwKajWYr4TNAJL3A03lYNFk6vu3e9KuhC-ywrjITwqBH9jLjR542fb_gNYv5ErMUvp7v6_49dg5Up3GTt0j7WYc5lG7DUmXV524S4P0JJF7n1j7f3GTuhs4wOgDy-snbhD5nOLENcmjw6dj1p3D5cctahxM9rPs4Z4l52U_TToamdS9Z3lJAvdL4Fd92z2865N2264N0jVKJGJ8aGobI8aimRGIvakxhFSK4MRnLKGWl0gBiPJ040A2cDK6M01M2AOwRfkRXbUMtGmdsFliI0SUTTGJGi-E0qA-0blyJAcFY3ua3DwUzi8XTl5DHCQR5KOvRah-NqGIVCGxk6c6MJzREccWboyzrslJqKn0pyjpiYTqn4tw68UEg1UPIz85hUEVeqiNuDi7Pqbu8vD-3DMl1TwperA6iNnyfuEBbNy_ghfz6C-Wgoj6ZW-Qmz4eF5
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED9NMAleYGNjFNjmSbxGTW03sR-rjgq0tiBWJN4sx3ZQJZROtEXijY_AZ-STcJekQUg8oT0mdqLo_jg_n-9-B3AUd2MZgtCRkpmIpI51ZLlVUUhT4sKzumvLQuFhOh6rqyt9XmcTUi1MxQ_RBNzIM8r1mhycAtLtF9ZQKsGm3CxNhCa4Cq9LtCU08vXfF4PLYbPrQgOtSoyEiKgT_Yq5Mebt1294C2O-hqzlP2ew_R--9hNs1YCT9SoL-QwfQrEDG_1Vn7cvYEYzlHUZXX96eFzxEwbPKAXk5p71yhWR2cIzRKbZTWAXy_ZkesZZn0I_9_PFnCHyZX_Ljjo0tX_GRoFC8qXWv8Ll4HjSP4nqtgvRNYIlanXifJJoz9OuFpnzqD-F-wjFtcO9nA5OOSsR5fEsiI4MXnqV5ontSB4QfqVe7MJaMSvCHrAcwUkmOs6JHOXvciVt7EKOECF42-G-BYcrkZvad-YGASFPFKW9tuBXM4xCoaMMW4TZkuYIjkgziVULvlWqMv8qeg5DXKdU_tsCXmqkGagYmrkhVZhGFaY3Pj1urvbf89BP2DiZjIZmeDr-cwCbdJ_Cv1wfwtridhm-w0d3t5jOb3_UxvkM8WTkgQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED9GOra9rPu_bN2mwV5NHEmxpceQNrQsTUvXQt-ELJ1LoTilSQZ920fYZ9wn2Z3tuBT6NPZoSzbm_sg_ne5-B_AtHaUaUdnE6EIl2qY28dKbBPOcufC8Hfm6UHiWz-fm_Nwet9mEXAvT8EN0ATf2jHq9ZgfH61gO7lhDuQSbc7MsE5rQKryluZNMD7Z2T6Zns27XRQbalBgplXAn-g1zYyoH99_wEMa8D1nrf850-z987Qt43gJOMW4s5CU8wuoVPJ1s-ry9Bne4IFnX0fU_v35v-AkxCk4BuboV43pFFL6KgpBpcYXiZD04vTySYsKhn9vlaikI-YofdUcdnjo5EofIIfla62_gbLp3OtlP2rYLyQWBJW51EmKW2SjzkVVFiKQ_Q_sII22gvZzFYILXhPJkgWqoMepo8jLzQy2R4Fce1VvoVYsK34MoCZwUahiCKkn-oTTapwFLgggY_VDGPuxsRO5a31k6AoQyM5z22oev3TAJhY8yfIWLNc9RkpBmlpo-vGtU5a4beg7HXKdc_tsHWWukG2gYmqVjVbhOFW48P9jrrj78y0Nf4Mnx7tTNDubfP8Izvs3RX2l3oLe6WeMneBx-ri6XN59b2_wLo3Hj_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphology%E2%80%90Engineered+Highly+Active+and+Stable+Ru%2FTiO2+Catalysts+for+Selective+CO+Methanation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Shilong&rft.au=Ali+M+Abdel%E2%80%90Mageed&rft.au=Li%2C+Dan&rft.au=Bansmann%2C+Joachim&rft.date=2019-07-29&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=31&rft.spage=10732&rft.epage=10736&rft_id=info:doi/10.1002%2Fanie.201903882&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon