Achieving Stable Cycling of LiCoO2 at 4.6 V by Multilayer Surface Modification

LiCoO2, which was first proposed as a cathode in 1980 by Prof. John B. Goodenough, is still one of the most popular commercial cathodes for lithium‐ion batteries. Tremendous efforts have been invested in increasing the capacity of LiCoO2 by charging to high voltage. However, a series of issues, such...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 31; no. 2
Main Authors: Cheng, Tao, Ma, Zhongtao, Qian, Ruicheng, Wang, Yeting, Cheng, Qin, Lyu, Yingchun, Nie, Anmin, Guo, Bingkun
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01.01.2021
Subjects:
ISSN:1616-301X, 1616-3028
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract LiCoO2, which was first proposed as a cathode in 1980 by Prof. John B. Goodenough, is still one of the most popular commercial cathodes for lithium‐ion batteries. Tremendous efforts have been invested in increasing the capacity of LiCoO2 by charging to high voltage. However, a series of issues, such as structural instability and dramatic side reactions with electrolytes, can emerge as cut‐off voltage above 4.5 V (vs Li/Li+). Here, a surface modification strategy with a multilayer structure is provided, involving a Zn‐rich surface coating layer, rock‐salt phase buffer layer and surface gradient Al doping layer, to overcome the detrimental issues and achieve stable cycling of LiCoO2 at 4.6 V. The complete coating of the modification layer restrains the interfacial side reactions with electrolyte and inhibits the impedance growth. The phenomenon of quasi‐epitaxial growth demonstrates that the multilayer structure significantly reduces the lattice mismatch between host LiCoO2 and surface coating layer and enhances the stability of the Zn‐rich outside layer, which promote the long‐term effectiveness of the modification. Furthermore, the disordered rock‐salt phase layer and Al surface doping also enhance the structural stability. All of these synergistically lead to the stable cycling of LiCoO2 at 4.6 V with a capacity retention of 65.7% after 500 cycles. A multilayer structure on the surface of LiCoO2, composed by a Zn‐rich layer with a wurtzite phase, a rock‐salt phase buffer layer, and a surface gradient Al doping layer, is formed to resolve the deleterious issues when operating at 4.6 V. The quasi‐epitaxial Zn‐rich layer can work well during long‐term cycling. The rock‐salt layer and gradient Al doping layer improve the structural stability.
AbstractList LiCoO2, which was first proposed as a cathode in 1980 by Prof. John B. Goodenough, is still one of the most popular commercial cathodes for lithium‐ion batteries. Tremendous efforts have been invested in increasing the capacity of LiCoO2 by charging to high voltage. However, a series of issues, such as structural instability and dramatic side reactions with electrolytes, can emerge as cut‐off voltage above 4.5 V (vs Li/Li+). Here, a surface modification strategy with a multilayer structure is provided, involving a Zn‐rich surface coating layer, rock‐salt phase buffer layer and surface gradient Al doping layer, to overcome the detrimental issues and achieve stable cycling of LiCoO2 at 4.6 V. The complete coating of the modification layer restrains the interfacial side reactions with electrolyte and inhibits the impedance growth. The phenomenon of quasi‐epitaxial growth demonstrates that the multilayer structure significantly reduces the lattice mismatch between host LiCoO2 and surface coating layer and enhances the stability of the Zn‐rich outside layer, which promote the long‐term effectiveness of the modification. Furthermore, the disordered rock‐salt phase layer and Al surface doping also enhance the structural stability. All of these synergistically lead to the stable cycling of LiCoO2 at 4.6 V with a capacity retention of 65.7% after 500 cycles.
LiCoO2, which was first proposed as a cathode in 1980 by Prof. John B. Goodenough, is still one of the most popular commercial cathodes for lithium‐ion batteries. Tremendous efforts have been invested in increasing the capacity of LiCoO2 by charging to high voltage. However, a series of issues, such as structural instability and dramatic side reactions with electrolytes, can emerge as cut‐off voltage above 4.5 V (vs Li/Li+). Here, a surface modification strategy with a multilayer structure is provided, involving a Zn‐rich surface coating layer, rock‐salt phase buffer layer and surface gradient Al doping layer, to overcome the detrimental issues and achieve stable cycling of LiCoO2 at 4.6 V. The complete coating of the modification layer restrains the interfacial side reactions with electrolyte and inhibits the impedance growth. The phenomenon of quasi‐epitaxial growth demonstrates that the multilayer structure significantly reduces the lattice mismatch between host LiCoO2 and surface coating layer and enhances the stability of the Zn‐rich outside layer, which promote the long‐term effectiveness of the modification. Furthermore, the disordered rock‐salt phase layer and Al surface doping also enhance the structural stability. All of these synergistically lead to the stable cycling of LiCoO2 at 4.6 V with a capacity retention of 65.7% after 500 cycles. A multilayer structure on the surface of LiCoO2, composed by a Zn‐rich layer with a wurtzite phase, a rock‐salt phase buffer layer, and a surface gradient Al doping layer, is formed to resolve the deleterious issues when operating at 4.6 V. The quasi‐epitaxial Zn‐rich layer can work well during long‐term cycling. The rock‐salt layer and gradient Al doping layer improve the structural stability.
Author Cheng, Qin
Lyu, Yingchun
Qian, Ruicheng
Nie, Anmin
Cheng, Tao
Ma, Zhongtao
Guo, Bingkun
Wang, Yeting
Author_xml – sequence: 1
  givenname: Tao
  surname: Cheng
  fullname: Cheng, Tao
  organization: Shanghai University
– sequence: 2
  givenname: Zhongtao
  surname: Ma
  fullname: Ma, Zhongtao
  organization: Shanghai University
– sequence: 3
  givenname: Ruicheng
  surname: Qian
  fullname: Qian, Ruicheng
  organization: Shanghai University
– sequence: 4
  givenname: Yeting
  surname: Wang
  fullname: Wang, Yeting
  organization: Shanghai University
– sequence: 5
  givenname: Qin
  surname: Cheng
  fullname: Cheng, Qin
  organization: Shanghai University
– sequence: 6
  givenname: Yingchun
  orcidid: 0000-0003-3229-1175
  surname: Lyu
  fullname: Lyu, Yingchun
  email: yclyu@shu.edu.cn
  organization: Shanghai University
– sequence: 7
  givenname: Anmin
  surname: Nie
  fullname: Nie, Anmin
  email: anmin@ysu.edu.cn
  organization: Yanshan University
– sequence: 8
  givenname: Bingkun
  orcidid: 0000-0003-2800-6001
  surname: Guo
  fullname: Guo, Bingkun
  email: guobingkun@shu.edu.cn
  organization: Tianmu Lake Institute of Advanced Energy Storage Technology
BookMark eNo9kEtLAzEUhYNUsK1uXQdcT81rknRZRqtCaxdVcRfS5KamTGfqPJT5906pdHXugY974BuhQVEWgNAtJRNKCLu3PuwnjDBC6FSJCzSkksqEE6YH55t-XqFRXe96Rikuhuh15r4i_MRii9eN3eSAs87lx1oGvIhZuWLYNlhMJP7Amw4v27yJue2gwuu2CtYBXpY-huhsE8viGl0Gm9dw859j9D5_fMuek8Xq6SWbLZIt51okIL0XATh3G-sdcKE4kNRSwRyVeuoJ6FRDz2ihXPBBK22540F7CU46zcfo7vT3UJXfLdSN2ZVtVfSThgklU5oyLnpqeqJ-Yw6dOVRxb6vOUGKOwsxRmDkLM7OH-fLc-B8k0mI5
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2021 Wiley‐VCH GmbH
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202001974
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202001974
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11701165
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 18010500‐300; D16002
– fundername: 111 Project
  funderid: D16002
– fundername: National Key Research and Development Program of China
  funderid: 2018YFB0905400
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-g3384-e6dd4fe33cbadce3473e05a142c1689d0e858edd4847cfdf878a3c3f8d6ec6c83
IEDL.DBID DRFUL
ISICitedReferencesCount 127
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532533000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1616-301X
IngestDate Mon Jul 14 07:42:02 EDT 2025
Wed Jan 22 16:58:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3384-e6dd4fe33cbadce3473e05a142c1689d0e858edd4847cfdf878a3c3f8d6ec6c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3229-1175
0000-0003-2800-6001
PQID 2476515234
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2476515234
wiley_primary_10_1002_adfm_202001974_ADFM202001974
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 4
2019; 6
2003; 117
2019 2017; 30 29
2016; 328
2004; 49
2004; 7
2019 2014; 11 53
2012 2017 2014; 24 9 6
2018; 87
2019; 166
2006; 177
2016 2014; 166 14
2018; 9
2016; 6
2010; 20
2007; 515
2005; 146
2019 2013; 55 160
2019 2015 2000; 10 5 12
2010; 195
2017; 164
2012; 159
2014; 6
2017; 346
2015 2012 2019 1996 2019 2018 2017; 7 219 19 83 29 47 7
References_xml – volume: 49
  start-page: 1079
  year: 2004
  publication-title: Electrochim. Acta
– volume: 87
  start-page: 71
  year: 2018
  publication-title: Electrochem. Commun.
– volume: 20
  start-page: 7606
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 177
  start-page: 317
  year: 2006
  publication-title: Solid State Ionics
– volume: 7 219 19 83 29 47 7
  start-page: 94 29 167 6505
  year: 2015 2012 2019 1996 2019 2018 2017
  publication-title: ACS Appl. Mater. Interfaces J. Power Sources Nano Lett. Solid State Ionics Adv. Funct. Mater. Chem. Soc. Rev. Adv. Energy Mater.
– volume: 24 9 6
  start-page: 1192 9718
  year: 2012 2017 2014
  publication-title: Adv. Mater. ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces
– volume: 195
  start-page: 320
  year: 2010
  publication-title: J. Power Sources
– volume: 7
  start-page: A11
  year: 2004
  publication-title: Electrochem. Solid‐State Lett.
– volume: 30 29
  year: 2019 2017
  publication-title: Adv. Funct. Mater. Adv. Mater.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 4918
  year: 2018
  publication-title: Nat. Commun.
– volume: 515
  start-page: 8601
  year: 2007
  publication-title: Thin Solid Films
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 10 5 12
  start-page: 7537 3788
  year: 2019 2015 2000
  publication-title: J. Phys. Chem. Lett. Adv. Energy Mater. Chem. Mater.
– volume: 159
  start-page: A396
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 328
  start-page: 161
  year: 2016
  publication-title: J. Power Sources
– volume: 4
  start-page: 594
  year: 2019
  publication-title: Nat. Energy
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 346
  start-page: 24
  year: 2017
  publication-title: J. Power Sources
– volume: 11 53
  year: 2019 2014
  publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed.
– volume: 146
  start-page: 250
  year: 2005
  publication-title: J. Power Sources
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55 160
  start-page: 545
  year: 2019 2013
  publication-title: Chem. Commun. J. Electrochem. Soc.
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 166 14
  start-page: 9 3047
  year: 2016 2014
  publication-title: Ultramicroscopy Nano Lett.
– volume: 117
  start-page: 160
  year: 2003
  publication-title: J. Power Sources
SSID ssj0017734
Score 2.6364522
Snippet LiCoO2, which was first proposed as a cathode in 1980 by Prof. John B. Goodenough, is still one of the most popular commercial cathodes for lithium‐ion...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms 4.6 V LiCoO2
Buffer layers
Cathodes
Coating
Cycles
Doping
Electrolytes
Epitaxial growth
Lithium compounds
Lithium-ion batteries
Materials science
Multilayers
quasi‐epitaxial growth
Structural stability
surface multilayer modification
Surface stability
Title Achieving Stable Cycling of LiCoO2 at 4.6 V by Multilayer Surface Modification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001974
https://www.proquest.com/docview/2476515234
Volume 31
WOSCitedRecordID wos000532533000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UPOjB30YUTQ9eJ1tb2nIkIPEAaFQIt6V7bZGEMMMPE_572w0Qrnrbkm1ZXt_b-_be974i9KA5U0yHKrAumweMsCSoKVBuQQQHwgmBTI6h3xbdrhwMaq9bU_y5PsSm4OYjI_te-wBXyazyKxqqtPWT5J4T5DDxPioS57zVAio231q99qaTIETeWeaR53hFg7VwY0gqu0_YgZjbQDXLNK2T_7_jKTpeoUxcz93iDO2ZyTk62tIevEDdOnyOjC8nYAc4k7HBjaUfkxzi1OL2qJG-EKzmmD1y3MfJEmeTumPlEDp-X0ytAoM7qfZEo2xtL1Gv9fTReA5WmysEQ_dXygLDtWbWUAqJ0mAoE9SEVRUxAhGXNR0aWZXGXePSF1htpZCKArVScwMcJL1ChUk6MdcIU-BCCWklgG8wuyNPtTEkojrUoGgJldeWjVcRMosJE34XdkJZCZHMhvFXrq8R50rKJPbWizfWi-vNVmdzdvOXm27RIfGUlKyCUkaF-XRh7tABfM9Hs-n9ynN-ANUYw10
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT8IwEG8UTNQHv4342QdfJ1tb2vJIUIJxoPGD8LaUa4skBgyiif-97TYmvBrftmRbluvd7re73_2K0KXmTDEdqsC6bB4wwgZBXYFyCyI4EE4IpHIMvVh0u7Lfrz_kbEI_C5PpQxQFNx8Z6ffaB7gvSFd_VUOVtn6U3JOCHCheRWXmfMk5efn6sfUSF60EIbLWMo88ySvqz5UbQ1JdfsISxlxEqmmqaW3_w0vuoK0cZ-JG5hi7aMWM99DmgvrgPuo24HVkfEEBO8g5eDO4-e0HJYd4YnE8ak7uCVYzzK447uHBN05ndd-Uw-j46XNqFRjcmWhPNUpX9wC9tG6em-0g314hGLr_UhYYrjWzhlIYKA2GMkFNWFMRIxBxWdehkTVp3DUugYHVVgqpKFArNTfAQdJDVBpPxuYIYQpcKCGtBPAtZnfkyTaGRFSHGhStoNO5aZM8Rj4SwoTfh51QVkEkNWLynilsJJmWMkm89ZLCeknjutUpzo7_ctMFWm8_d-Ikvu3enaAN4gkqaT3lFJVm009zhtbgazb6mJ7nbvQDowrHTQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8MwDLVgQwgOfCMGA3LgWmiTkGTHaaMCMQbiS7tVmZPAJLShMZD49yRtN-CKuLVSW1VOXL_az88AR0ZwzU2sI-ejecQp70cNjdoviBRIBaWYyzE8dmS3q3q9xk3JJgy9MIU-xCzhFjwj_14HB7evxp18q4Zq40IreSAFeVA8D1UeJslUoNq-TR86s1KClEVpWSSB5JX0psqNMT35_YRfGPMnUs1DTbr6Dy-5BislziTNYmOsw5wdbsDyD_XBTeg28XlgQ0KBeMjZf7Gk9RkaJZ_IyJHOoDW6pkRPCD8W5JH0P0neq_uiPUYnd-9jp9GSq5EJVKN8dbfgIT27b51H5XiF6Mn_l_LICmO4s4xhXxu0jEtm41OdcIqJUA0TW3WqrL_GBzB0ximpNEPmlBEWBSq2DZXhaGh3gDAUUkvlFGIoMfujQLaxNGEmNqhZDepT02alj7xllMswh50yXgOaGzF7LRQ2skJLmWbBetnMelmznV7Nznb_ctMhLN6006xz0b3cgyUa-Cl5OqUOlcn43e7DAn5MBm_jg3IXfQF_RsbI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Stable+Cycling+of+LiCoO2+at+4.6+V+by+Multilayer+Surface+Modification&rft.jtitle=Advanced+functional+materials&rft.au=Cheng%2C+Tao&rft.au=Ma%2C+Zhongtao&rft.au=Qian%2C+Ruicheng&rft.au=Wang%2C+Yeting&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=2&rft_id=info:doi/10.1002%2Fadfm.202001974&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon