Achieving Stable Cycling of LiCoO2 at 4.6 V by Multilayer Surface Modification
LiCoO2, which was first proposed as a cathode in 1980 by Prof. John B. Goodenough, is still one of the most popular commercial cathodes for lithium‐ion batteries. Tremendous efforts have been invested in increasing the capacity of LiCoO2 by charging to high voltage. However, a series of issues, such...
Uloženo v:
| Vydáno v: | Advanced functional materials Ročník 31; číslo 2 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.01.2021
|
| Témata: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | LiCoO2, which was first proposed as a cathode in 1980 by Prof. John B. Goodenough, is still one of the most popular commercial cathodes for lithium‐ion batteries. Tremendous efforts have been invested in increasing the capacity of LiCoO2 by charging to high voltage. However, a series of issues, such as structural instability and dramatic side reactions with electrolytes, can emerge as cut‐off voltage above 4.5 V (vs Li/Li+). Here, a surface modification strategy with a multilayer structure is provided, involving a Zn‐rich surface coating layer, rock‐salt phase buffer layer and surface gradient Al doping layer, to overcome the detrimental issues and achieve stable cycling of LiCoO2 at 4.6 V. The complete coating of the modification layer restrains the interfacial side reactions with electrolyte and inhibits the impedance growth. The phenomenon of quasi‐epitaxial growth demonstrates that the multilayer structure significantly reduces the lattice mismatch between host LiCoO2 and surface coating layer and enhances the stability of the Zn‐rich outside layer, which promote the long‐term effectiveness of the modification. Furthermore, the disordered rock‐salt phase layer and Al surface doping also enhance the structural stability. All of these synergistically lead to the stable cycling of LiCoO2 at 4.6 V with a capacity retention of 65.7% after 500 cycles.
A multilayer structure on the surface of LiCoO2, composed by a Zn‐rich layer with a wurtzite phase, a rock‐salt phase buffer layer, and a surface gradient Al doping layer, is formed to resolve the deleterious issues when operating at 4.6 V. The quasi‐epitaxial Zn‐rich layer can work well during long‐term cycling. The rock‐salt layer and gradient Al doping layer improve the structural stability. |
|---|---|
| AbstractList | LiCoO2, which was first proposed as a cathode in 1980 by Prof. John B. Goodenough, is still one of the most popular commercial cathodes for lithium‐ion batteries. Tremendous efforts have been invested in increasing the capacity of LiCoO2 by charging to high voltage. However, a series of issues, such as structural instability and dramatic side reactions with electrolytes, can emerge as cut‐off voltage above 4.5 V (vs Li/Li+). Here, a surface modification strategy with a multilayer structure is provided, involving a Zn‐rich surface coating layer, rock‐salt phase buffer layer and surface gradient Al doping layer, to overcome the detrimental issues and achieve stable cycling of LiCoO2 at 4.6 V. The complete coating of the modification layer restrains the interfacial side reactions with electrolyte and inhibits the impedance growth. The phenomenon of quasi‐epitaxial growth demonstrates that the multilayer structure significantly reduces the lattice mismatch between host LiCoO2 and surface coating layer and enhances the stability of the Zn‐rich outside layer, which promote the long‐term effectiveness of the modification. Furthermore, the disordered rock‐salt phase layer and Al surface doping also enhance the structural stability. All of these synergistically lead to the stable cycling of LiCoO2 at 4.6 V with a capacity retention of 65.7% after 500 cycles. LiCoO2, which was first proposed as a cathode in 1980 by Prof. John B. Goodenough, is still one of the most popular commercial cathodes for lithium‐ion batteries. Tremendous efforts have been invested in increasing the capacity of LiCoO2 by charging to high voltage. However, a series of issues, such as structural instability and dramatic side reactions with electrolytes, can emerge as cut‐off voltage above 4.5 V (vs Li/Li+). Here, a surface modification strategy with a multilayer structure is provided, involving a Zn‐rich surface coating layer, rock‐salt phase buffer layer and surface gradient Al doping layer, to overcome the detrimental issues and achieve stable cycling of LiCoO2 at 4.6 V. The complete coating of the modification layer restrains the interfacial side reactions with electrolyte and inhibits the impedance growth. The phenomenon of quasi‐epitaxial growth demonstrates that the multilayer structure significantly reduces the lattice mismatch between host LiCoO2 and surface coating layer and enhances the stability of the Zn‐rich outside layer, which promote the long‐term effectiveness of the modification. Furthermore, the disordered rock‐salt phase layer and Al surface doping also enhance the structural stability. All of these synergistically lead to the stable cycling of LiCoO2 at 4.6 V with a capacity retention of 65.7% after 500 cycles. A multilayer structure on the surface of LiCoO2, composed by a Zn‐rich layer with a wurtzite phase, a rock‐salt phase buffer layer, and a surface gradient Al doping layer, is formed to resolve the deleterious issues when operating at 4.6 V. The quasi‐epitaxial Zn‐rich layer can work well during long‐term cycling. The rock‐salt layer and gradient Al doping layer improve the structural stability. |
| Author | Cheng, Qin Lyu, Yingchun Qian, Ruicheng Nie, Anmin Cheng, Tao Ma, Zhongtao Guo, Bingkun Wang, Yeting |
| Author_xml | – sequence: 1 givenname: Tao surname: Cheng fullname: Cheng, Tao organization: Shanghai University – sequence: 2 givenname: Zhongtao surname: Ma fullname: Ma, Zhongtao organization: Shanghai University – sequence: 3 givenname: Ruicheng surname: Qian fullname: Qian, Ruicheng organization: Shanghai University – sequence: 4 givenname: Yeting surname: Wang fullname: Wang, Yeting organization: Shanghai University – sequence: 5 givenname: Qin surname: Cheng fullname: Cheng, Qin organization: Shanghai University – sequence: 6 givenname: Yingchun orcidid: 0000-0003-3229-1175 surname: Lyu fullname: Lyu, Yingchun email: yclyu@shu.edu.cn organization: Shanghai University – sequence: 7 givenname: Anmin surname: Nie fullname: Nie, Anmin email: anmin@ysu.edu.cn organization: Yanshan University – sequence: 8 givenname: Bingkun orcidid: 0000-0003-2800-6001 surname: Guo fullname: Guo, Bingkun email: guobingkun@shu.edu.cn organization: Tianmu Lake Institute of Advanced Energy Storage Technology |
| BookMark | eNo9kEtLAzEUhYNUsK1uXQdcT81rknRZRqtCaxdVcRfS5KamTGfqPJT5906pdHXugY974BuhQVEWgNAtJRNKCLu3PuwnjDBC6FSJCzSkksqEE6YH55t-XqFRXe96Rikuhuh15r4i_MRii9eN3eSAs87lx1oGvIhZuWLYNlhMJP7Amw4v27yJue2gwuu2CtYBXpY-huhsE8viGl0Gm9dw859j9D5_fMuek8Xq6SWbLZIt51okIL0XATh3G-sdcKE4kNRSwRyVeuoJ6FRDz2ihXPBBK22540F7CU46zcfo7vT3UJXfLdSN2ZVtVfSThgklU5oyLnpqeqJ-Yw6dOVRxb6vOUGKOwsxRmDkLM7OH-fLc-B8k0mI5 |
| ContentType | Journal Article |
| Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2021 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2021 Wiley‐VCH GmbH |
| DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.202001974 |
| DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | ADFM202001974 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11701165 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 18010500‐300; D16002 – fundername: 111 Project funderid: D16002 – fundername: National Key Research and Development Program of China funderid: 2018YFB0905400 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
| ID | FETCH-LOGICAL-g3384-e6dd4fe33cbadce3473e05a142c1689d0e858edd4847cfdf878a3c3f8d6ec6c83 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 127 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532533000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1616-301X |
| IngestDate | Mon Jul 14 07:42:02 EDT 2025 Wed Jan 22 16:58:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-g3384-e6dd4fe33cbadce3473e05a142c1689d0e858edd4847cfdf878a3c3f8d6ec6c83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3229-1175 0000-0003-2800-6001 |
| PQID | 2476515234 |
| PQPubID | 2045204 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2476515234 wiley_primary_10_1002_adfm_202001974_ADFM202001974 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2019; 4 2019; 6 2003; 117 2019 2017; 30 29 2016; 328 2004; 49 2004; 7 2019 2014; 11 53 2012 2017 2014; 24 9 6 2018; 87 2019; 166 2006; 177 2016 2014; 166 14 2018; 9 2016; 6 2010; 20 2007; 515 2005; 146 2019 2013; 55 160 2019 2015 2000; 10 5 12 2010; 195 2017; 164 2012; 159 2014; 6 2017; 346 2015 2012 2019 1996 2019 2018 2017; 7 219 19 83 29 47 7 |
| References_xml | – volume: 49 start-page: 1079 year: 2004 publication-title: Electrochim. Acta – volume: 87 start-page: 71 year: 2018 publication-title: Electrochem. Commun. – volume: 20 start-page: 7606 year: 2010 publication-title: J. Mater. Chem. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 177 start-page: 317 year: 2006 publication-title: Solid State Ionics – volume: 7 219 19 83 29 47 7 start-page: 94 29 167 6505 year: 2015 2012 2019 1996 2019 2018 2017 publication-title: ACS Appl. Mater. Interfaces J. Power Sources Nano Lett. Solid State Ionics Adv. Funct. Mater. Chem. Soc. Rev. Adv. Energy Mater. – volume: 24 9 6 start-page: 1192 9718 year: 2012 2017 2014 publication-title: Adv. Mater. ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces – volume: 195 start-page: 320 year: 2010 publication-title: J. Power Sources – volume: 7 start-page: A11 year: 2004 publication-title: Electrochem. Solid‐State Lett. – volume: 30 29 year: 2019 2017 publication-title: Adv. Funct. Mater. Adv. Mater. – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 4918 year: 2018 publication-title: Nat. Commun. – volume: 515 start-page: 8601 year: 2007 publication-title: Thin Solid Films – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 10 5 12 start-page: 7537 3788 year: 2019 2015 2000 publication-title: J. Phys. Chem. Lett. Adv. Energy Mater. Chem. Mater. – volume: 159 start-page: A396 year: 2012 publication-title: J. Electrochem. Soc. – volume: 328 start-page: 161 year: 2016 publication-title: J. Power Sources – volume: 4 start-page: 594 year: 2019 publication-title: Nat. Energy – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 346 start-page: 24 year: 2017 publication-title: J. Power Sources – volume: 11 53 year: 2019 2014 publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. – volume: 146 start-page: 250 year: 2005 publication-title: J. Power Sources – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 55 160 start-page: 545 year: 2019 2013 publication-title: Chem. Commun. J. Electrochem. Soc. – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – volume: 166 14 start-page: 9 3047 year: 2016 2014 publication-title: Ultramicroscopy Nano Lett. – volume: 117 start-page: 160 year: 2003 publication-title: J. Power Sources |
| SSID | ssj0017734 |
| Score | 2.6364522 |
| Snippet | LiCoO2, which was first proposed as a cathode in 1980 by Prof. John B. Goodenough, is still one of the most popular commercial cathodes for lithium‐ion... |
| SourceID | proquest wiley |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | 4.6 V LiCoO2 Buffer layers Cathodes Coating Cycles Doping Electrolytes Epitaxial growth Lithium compounds Lithium-ion batteries Materials science Multilayers quasi‐epitaxial growth Structural stability surface multilayer modification Surface stability |
| Title | Achieving Stable Cycling of LiCoO2 at 4.6 V by Multilayer Surface Modification |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001974 https://www.proquest.com/docview/2476515234 |
| Volume | 31 |
| WOSCitedRecordID | wos000532533000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oeNCDbyOKpgevK7ttt1uOBCQeAI2K4bbp9qEkhDU8TPj3trvLClc9NmmbZjrTfp3OfANwR5NQBpz5Hk4M9agFRp7gmFpzj4zkoeIiyUhce9FgwEej5vNGFn_OD1E63JxlZOe1M3CRzBu_pKFCGZdJ7mKCLCbehSq2yhtWoNp56Q575U9CFOU_yyxwMV7BaE3c6OPG9gxbEHMTqGY3Tffo_2s8hsMCZaJWrhYnsKOnp3CwwT14BoOW_Bxr505AFnAmE43aK5cm-YFSg3rjdvqEkVgges_QO0pWKMvUnQiL0NHrcmaE1KifKhdolO3tOQy7D2_tR68oruB92Fcp9TRTihpNiEyEkprQiGg_FAHFMmC8qXzNQ65tH3t9SaMMj7ggkhiumJZMcnIBlWk61ZeAMFW-FMqCGUxokwSCMl8Z-9wl2gTSNzWoryUbFxYyjzGNXBV2O6IGOJNh_JXza8Q5kzKOnfTiUnpxq9Ptl62rvwy6hn3sQlIyD0odKovZUt_AnvxejOez20JzfgDgjsNX |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bT8IwFG4UTNQH70YUtQ--Tre228ojAReMYxoFw9vS9YIkhBkuJvx7221MeDU-Llmb5eyc9uvpd74DwB1JXO5Qz7ZQoohFNDCyGEVEh7uvOHUFZUkm4hr6UUQHg8ZrwSY0tTC5PkSZcDORka3XJsBNQvrhVzWUCWVKyQ0pSIPibVAl2pe0k1fbb0E_LK8SfD-_WvYcQ_JyBivlRhs9bM6wgTHXkWq21QSH__CRR-CgwJmwmTvGMdiSkxOwv6Y-eAqiJv8cSZNQgBpyJmMJW0tTKDmEqYLhqJW-IMjmkNx78AMmS5jV6o6ZxujwfTFVjEvYTYWhGmV_9wz0g8deq2MV7RWsoT6XEkt6QhAlMeYJE1xi4mNpu8whiDsebQhbUpdK_Y7ewLgSivqUYY4VFZ7kHqf4HFQm6UReAIiIsDkTGs4gTBrYYcSzhdIHXiyVw21VA_WVaeMiRmYxIr7pw65H1ADKjBh_5Qobca6ljGJjvbi0XtxsB93y6fIvg27BbqfXDePwKXq-AnvIEFSyfEodVObThbwGO_x7PppNbwo3-gGuVMdH |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bT8IwFD5RMEYfvBtR1D74Ot3aspVHAi4aBxIVw9vS9YIkBAgXE_697TYQXo2PS9ZmOTun_Xr6ne8A3NGkIjzmuw5ONHWoAUYOZ5iacA-0YBXJeJKKuEZBq8W63Wo7ZxPaWphMH2KVcLORka7XNsDVWOqHX9VQLrUtJbekIAOKt6FIbSeZAhQbb2EnWl0lBEF2tex7luTldZfKjS5-2JxhA2OuI9V0qwkP_-Ejj-Agx5moljnGMWyp4Qnsr6kPnkKrJr76yiYUkIGcyUCh-sIWSvbQSKOoXx-9YsRniN776BMlC5TW6g64wejofT7RXCjUHElLNUr_7hl0wseP-pOTt1dweuZcSh3lS0m1IkQkXApFaECUW-EexcLzWVW6ilWYMu-YDUxoqVnAOBFEM-kr4QtGzqEwHA3VBSBMpSu4NHAGE1olHqe-K7U58BKlPeHqEpSXpo3zGJnGmAa2D7sZUQKcGjEeZwobcaaljGNrvXhlvbjWCJurp8u_DLqF3XYjjKPn1ssV7GHLT0nTKWUozCZzdQ074nvWn05uci_6AYqWxsI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Stable+Cycling+of+LiCoO2+at+4.6+V+by+Multilayer+Surface+Modification&rft.jtitle=Advanced+functional+materials&rft.au=Cheng%2C+Tao&rft.au=Ma%2C+Zhongtao&rft.au=Qian%2C+Ruicheng&rft.au=Wang%2C+Yeting&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=2&rft_id=info:doi/10.1002%2Fadfm.202001974&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |