Engineering Fe–Fe3C@Fe–N–C Active Sites and Hybrid Structures from Dual Metal–Organic Frameworks for Oxygen Reduction Reaction in H2–O2 Fuel Cell and Li–O2 Battery
Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal (PGM)‐free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF‐8 rearranged into highly N‐doped carbon, while...
Uložené v:
| Vydané v: | Advanced functional materials Ročník 29; číslo 23 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
06.06.2019
|
| Predmet: | |
| ISSN: | 1616-301X, 1616-3028 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal (PGM)‐free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF‐8 rearranged into highly N‐doped carbon, while Fe from MIL‐100(Fe) into N‐ligated atomic sites concurrently with a few Fe–Fe3C nanoparticles. Upon precise control of MOF compositions, the optimal catalyst is highly active for the ORR in half‐cells (0.88 V in base and 0.79 V versus RHE in acid in half‐wave potential), a proton exchange membrane fuel cell (0.76 W cm−2 in peak power density) and an aprotic Li–O2 battery (8749 mAh g−1 in discharge capacity), representing a state‐of‐the‐art PGM‐free ORR catalyst. In the material, amorphous carbon with partial graphitization ensures high active site exposure and fast charge transfer simultaneously. Macropores facilitate mass transport to the catalyst surface, followed by oxygen penetration in micropores to reach the infiltrated active sites. Further modeling simulations shed light on the true Fe–Fe3C contribution to the catalyst performance, suggesting Fe3C enhances oxygen affinity, while metallic Fe promotes *OH desorption as the rate‐determining step at the nearby Fe–N–C sites. These findings demonstrate MOFs as model system for rational design of electrocatalyst for energy‐based functional applications.
An Fe–N–C catalyst is derived from dual metal–organic frameworks through facile pyrolysis, affording excellent oxygen reduction catalytic performance in alkaline/acidic half‐cells, a H2–O2 proton exchange membrane fuel cell, and a Li–O2 battery. The excellent catalytic performance benefits from density populated Fe–Fe3C@Fe–N–C dual active sites, hierarchical porosities for mass transport, and partial carbon graphitization for charge transfer. |
|---|---|
| AbstractList | Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal (PGM)‐free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF‐8 rearranged into highly N‐doped carbon, while Fe from MIL‐100(Fe) into N‐ligated atomic sites concurrently with a few Fe–Fe3C nanoparticles. Upon precise control of MOF compositions, the optimal catalyst is highly active for the ORR in half‐cells (0.88 V in base and 0.79 V versus RHE in acid in half‐wave potential), a proton exchange membrane fuel cell (0.76 W cm−2 in peak power density) and an aprotic Li–O2 battery (8749 mAh g−1 in discharge capacity), representing a state‐of‐the‐art PGM‐free ORR catalyst. In the material, amorphous carbon with partial graphitization ensures high active site exposure and fast charge transfer simultaneously. Macropores facilitate mass transport to the catalyst surface, followed by oxygen penetration in micropores to reach the infiltrated active sites. Further modeling simulations shed light on the true Fe–Fe3C contribution to the catalyst performance, suggesting Fe3C enhances oxygen affinity, while metallic Fe promotes *OH desorption as the rate‐determining step at the nearby Fe–N–C sites. These findings demonstrate MOFs as model system for rational design of electrocatalyst for energy‐based functional applications. Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal (PGM)‐free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF‐8 rearranged into highly N‐doped carbon, while Fe from MIL‐100(Fe) into N‐ligated atomic sites concurrently with a few Fe–Fe3C nanoparticles. Upon precise control of MOF compositions, the optimal catalyst is highly active for the ORR in half‐cells (0.88 V in base and 0.79 V versus RHE in acid in half‐wave potential), a proton exchange membrane fuel cell (0.76 W cm−2 in peak power density) and an aprotic Li–O2 battery (8749 mAh g−1 in discharge capacity), representing a state‐of‐the‐art PGM‐free ORR catalyst. In the material, amorphous carbon with partial graphitization ensures high active site exposure and fast charge transfer simultaneously. Macropores facilitate mass transport to the catalyst surface, followed by oxygen penetration in micropores to reach the infiltrated active sites. Further modeling simulations shed light on the true Fe–Fe3C contribution to the catalyst performance, suggesting Fe3C enhances oxygen affinity, while metallic Fe promotes *OH desorption as the rate‐determining step at the nearby Fe–N–C sites. These findings demonstrate MOFs as model system for rational design of electrocatalyst for energy‐based functional applications. An Fe–N–C catalyst is derived from dual metal–organic frameworks through facile pyrolysis, affording excellent oxygen reduction catalytic performance in alkaline/acidic half‐cells, a H2–O2 proton exchange membrane fuel cell, and a Li–O2 battery. The excellent catalytic performance benefits from density populated Fe–Fe3C@Fe–N–C dual active sites, hierarchical porosities for mass transport, and partial carbon graphitization for charge transfer. |
| Author | Liu, Ning Kou, Rong‐Hui Yin, Hua‐Qiang Sun, Cheng‐Jun Liu, Di‐Jia He, Xiao‐Bo Chen, Biao‐Hua Yin, Feng‐Xiang Wang, Hao |
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0003-0674-0811 surname: Wang fullname: Wang, Hao organization: Argonne National Laboratory – sequence: 2 givenname: Feng‐Xiang orcidid: 0000-0003-3514-6707 surname: Yin fullname: Yin, Feng‐Xiang email: yinfx@mail.buct.edu.cn organization: Beijing University of Chemical Technology – sequence: 3 givenname: Ning surname: Liu fullname: Liu, Ning organization: Beijing University of Technology – sequence: 4 givenname: Rong‐Hui surname: Kou fullname: Kou, Rong‐Hui organization: Argonne National Laboratory – sequence: 5 givenname: Xiao‐Bo surname: He fullname: He, Xiao‐Bo organization: Beijing University of Chemical Technology – sequence: 6 givenname: Cheng‐Jun surname: Sun fullname: Sun, Cheng‐Jun organization: Argonne National Laboratory – sequence: 7 givenname: Biao‐Hua surname: Chen fullname: Chen, Biao‐Hua email: chenbh@mail.buct.edu.cn organization: Beijing University of Technology – sequence: 8 givenname: Di‐Jia orcidid: 0000-0003-1747-028X surname: Liu fullname: Liu, Di‐Jia organization: Argonne National Laboratory – sequence: 9 givenname: Hua‐Qiang surname: Yin fullname: Yin, Hua‐Qiang organization: Tsinghua University |
| BookMark | eNo9UU1PwkAU3BhMRPTqeRPP4H7Qlr2JhYoJSCKaeGu229dmsWxx24q9-R_8If4nf4ktGA4vb95k5s1hzlHH5AYQuqJkQAlhNzJONgNGqCDU4fQEdalL3T4nbNQ5Yvp6hs6LYk0I9Tw-7KKfqUm1AbDapDiA36_vALh_u0ePzfh4rEr9AXilSyiwNDGe1ZHVMV6VtlJlZRs2sfkGTyqZ4QWUMmtsS5tKoxUOrNzALrdvjSi3ePlZp2DwE8SNVectkgegDZ6x1shwUEGGfciyfdpcH9g7WZZg6wt0msisgMv_3UMvwfTZn_Xny_sHfzzvp5yOaN8FxoXiIycC6gmuElBcQUSEjAh1I8K44yZSSeGAIq6AWAgn5pErCVWSeRHvoevD363N3ysoynCdV9Y0kSFjfCicoSdEoxIH1U5nUIdbqzfS1iElYdtI2DYSHhsJx5Ngcbz4H3gaigY |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/adfm.201901531 |
| DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1616-3028 |
| EndPage | n/a |
| ExternalDocumentID | ADFM201901531 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21706010 – fundername: Advanced Catalysis and Green Manufacturing Collaborative Innovation Centre of Changzhou University funderid: ACGM2016‐06‐02; ACGM2016‐06‐03 – fundername: Fundamental Research Funds for the Central Universities – fundername: Changzhou Sci & Tech Program funderid: CJ20159006; CJ20160007 – fundername: U.S. Department of Energy (DOE) funderid: DE‐AC02‐06CH11357 |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M O8X |
| ID | FETCH-LOGICAL-g3181-6e239c385be1793cfec3ceb09ab016b02356faca95ec069ed995d3b6a01ca27b3 |
| IEDL.DBID | DRFUL |
| ISSN | 1616-301X |
| IngestDate | Sun Nov 30 05:08:15 EST 2025 Wed Jan 22 16:40:33 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-g3181-6e239c385be1793cfec3ceb09ab016b02356faca95ec069ed995d3b6a01ca27b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0674-0811 0000-0003-3514-6707 0000-0003-1747-028X |
| OpenAccessLink | https://www.osti.gov/biblio/1505647 |
| PQID | 2234954799 |
| PQPubID | 2045204 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2234954799 wiley_primary_10_1002_adfm_201901531_ADFM201901531 |
| PublicationCentury | 2000 |
| PublicationDate | June 6, 2019 |
| PublicationDateYYYYMMDD | 2019-06-06 |
| PublicationDate_xml | – month: 06 year: 2019 text: June 6, 2019 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Advanced functional materials |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 6 2017; 2 2011; 2 2015 2016; 9 138 2017; 4 2015; 51 2014 2016; 8 9 1976 1999 2010; 286 1 2011; 17 2013 2018; 6 2017; 9 2016 2017; 107 139 2018 2018 2014; 1 130 4 2015; 24 2015; 25 2016 2017; 138 9 2012; 3 2017 2017; 139 8 2015; 112 1991 2012; 113 134 2012; 6 2016; 25 2016 2018; 55 6 1985; 57 1964; 201 |
| References_xml | – start-page: 133 year: 1976 – volume: 112 start-page: 10629 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 9567 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 55 6 start-page: 1355 516 year: 2016 2018 publication-title: Angew. Chem., Int. Ed. J. Mater. Chem. A – volume: 4 start-page: 20 year: 2017 publication-title: Mater. Horiz. – volume: 139 8 start-page: 3336 15938 year: 2017 2017 publication-title: J. Am. Chem. Soc. Nat. Commun. – volume: 107 139 start-page: 248 453 year: 2016 2017 publication-title: Carbon J. Am. Chem. Soc. – volume: 25 start-page: 872 year: 2015 publication-title: Adv. Funct. Mater. – volume: 8 9 start-page: 12660 3092 year: 2014 2016 publication-title: ACS Nano Energy Environ. Sci. – volume: 24 start-page: 45 year: 2015 publication-title: Interface Mag. – volume: 17 start-page: 2063 year: 2011 publication-title: Chem. ‐ Eur. J. – volume: 138 9 start-page: 3570 4587 year: 2016 2017 publication-title: J. Am. Chem. Soc. ACS Appl. Mater. Interfaces – volume: 25 start-page: 110 year: 2016 publication-title: Nano Energy – volume: 1 130 4 start-page: 63 8661 1301735 year: 2018 2018 2014 publication-title: Nat. Catal. Angew. Chem. Adv. Energy Mater. – volume: 113 134 start-page: 9063 16654 year: 1991 2012 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 3 start-page: 3200 year: 2012 publication-title: Chem. Sci. – volume: 57 start-page: 603 year: 1985 publication-title: Pure Appl. Chem. – volume: 6 start-page: 121 year: 2013 2018 publication-title: AIMS Energy – volume: 2 start-page: 416 year: 2011 publication-title: Nat. Commun. – volume: 6 start-page: 9764 year: 2012 publication-title: ACS Nano – volume: 51 start-page: 2710 year: 2015 publication-title: Chem. Commun. – volume: 201 start-page: 1212 year: 1964 publication-title: Nature – volume: 2 start-page: 17090 year: 2017 publication-title: Nat. Energy – volume: 6 start-page: 7343 year: 2015 publication-title: Nat. Commun. – volume: 9 138 start-page: 12496 15046 year: 2015 2016 publication-title: ACS Nano J. Am. Chem. Soc. – volume: 286 1 start-page: 49c 2193 year: 1999 2010 publication-title: Science J. Phys. Chem. Lett. |
| SSID | ssj0017734 |
| Score | 2.6537101 |
| Snippet | Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal... |
| SourceID | proquest wiley |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Amorphous materials Batteries Carbon Catalysis Catalysts Cementite Charge transfer Computer simulation Electrocatalysts Fuel cells Graphitization H2–O2 fuel cell Hybrid structures Iron carbides iron–nitrogen–carbon Li–O2 battery Materials science Metal-organic frameworks Nanoparticles oxygen reduction reaction Oxygen reduction reactions Platinum Proton exchange membrane fuel cells Pyrolysis |
| Title | Engineering Fe–Fe3C@Fe–N–C Active Sites and Hybrid Structures from Dual Metal–Organic Frameworks for Oxygen Reduction Reaction in H2–O2 Fuel Cell and Li–O2 Battery |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201901531 https://www.proquest.com/docview/2234954799 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 issn: 1616-301X databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVQYYCBN-KtO7BGJE7ixBtVS9QBCuIhdYsc5wZVqgKiFNGNf-BD-Ce-hGu7LWWFIZEdxXGk-8hx7HPM2Emqo0DLIvIilMKLKjqlSsVeWHKlSwqRKqjsZhNJt5v2evJ6jsXv9CFmP9xMZNh8bQJcFcPTH9FQVVaGSW4_aIZIvcjJeeMGW2zfZPcXs5mEJHEzyyIwa7yC3lS40eenv5_wC2LOA1X7pcnW_v-O62x1gjKh6dxigy1gvclW5rQHt9jnXA0y_Hr_yDBsndlSl44WNG0qhFsCpUNQdQmdsaF3wa2VnB3ROB0MOQXaI-rqEgnFUzPH7dSQTRd90U2Pz3D1NiZPhRsjFGtcgUqOUQH9GjrcNOSQjXAALRwMbG8XfXfVKYCOt9l9dn7X6niT3Ru8B8oTgSeQh1KHaVygSQK6Qh1qLHypCoKZhdHZEZXSSsaofSGxlDIuw0IoP9CKJ0W4wxr1Y427DFAZlRwaKBJ6NAJxqtRphQEXlUi1r9QeO5yaLp-E4DAn3EODvyiRco9xa6T8yQl45E6qmefGPPnMPHmznV3Oavt_aXTAlk3ZLiUTh6xB9sAjtqRfX_rD5-OJa34DPo3rqQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbtswECWCJEDbRZp-giZNk1l0K0SiZErc1bAruKjtFPkA3gkUNQoMGEoQ10W96x16kNwpJ-kMKbvOtuhCAkmIooD56JGceRTiY2aTyOoyCRLUKkhqumXGdIK4ksZWZCJ1VLvDJtLxOJtM9Lc2mpBzYTw_xHrBjS3D-Ws2cF6QPvvLGmqqmlPJ3R-NM6l3EtIlUvKd_kV-PVxvJaSp31pWEQd5RZMVc2Moz56-4QnG3ESq7leTv_wPH7kv9lqcCV2vGK_EFjavxYsN9sE34mGjBjk-_vqdY9z75EpjunrQdc4QLgmWzsE0FQyWnOAFl450dkEzdeD0FOgvaKgREo6nbj6700K-Cvuih27v4fznknQVLpgqlpWBSj6nAqYNDCR3lJAvcAY9nM3caMOpb_UcoMu34jr_fNUbBO35DcENeYooUChjbeOsUyK7AVujjS2WoTYlAc2SmXZUbazRHbSh0lhp3aniUpkwskamZXwgtpvbBt8JQMM8OTRVJPzIFHGmslmNkVS1ymxozKE4XsmuaI1wXhDyoelfkmp9KKSTUnHnKTwKT9YsCxZPsRZP0e3no3Xt6F86nYpng6vRsBh-GX99L55zuwssU8dim2SDH8Su_fF9Or8_afX0D1Of75k |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLambkJwMcYAsTE2X3AbLXFSJ76jarGK6LppP1LvIsc5RpWqbFopone8Aw-yd9qTcI6dlu4WcZHItuI40vnx5_icz4x9LGyWWFVlUQZKRpnDW2FMN0prYWyNJuIS5w-byMfjYjJRF200IeXCBH6I9Q83sgzvr8nA4a52p39ZQ03tKJXcz2iUSb2d0UkyHbY9uNQ3o_VWQp6HrWWZUJBXMlkxN8bi9OkbnmDMTaTqpxr98j985B7bbXEm7wXFeMW2oNlnLzbYB1-zh40a1_D467eGtP_Jl8Z49XnPO0N-hbB0zk1T8-GSErz4lSedXeBKnVN6Ch8scKgzQByP3UJ2p-V6FfaFD93e8_OfS9RVfklUsaQMWAo5FXza8KGgjoLrBcx4H2YzP9poGloDB-jyDbvRn6_7w6g9vyH6hp4iiSSIVNm06FZAbsA6sKmFKlamQqBZEdOOdMYa1QUbSwW1Ut06raSJE2tEXqVvWae5beAd42CIJweXiogfiSLO1LZwkAjpZGFjYw7Y0Up2ZWuE8xKRDy7_slypAya8lMq7QOFRBrJmUZJ4yrV4yt5An61rh__S6YQ9uxjocvRl_PU9e07NPq5MHrEOigY-sB374_t0fn_cqukf-AjvFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Fe%E2%80%93Fe3C%40Fe%E2%80%93N%E2%80%93C+Active+Sites+and+Hybrid+Structures+from+Dual+Metal%E2%80%93Organic+Frameworks+for+Oxygen+Reduction+Reaction+in+H2%E2%80%93O2+Fuel+Cell+and+Li%E2%80%93O2+Battery&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Hao&rft.au=Yin%2C+Feng%E2%80%90Xiang&rft.au=Liu%2C+Ning&rft.au=Kou%2C+Rong%E2%80%90Hui&rft.date=2019-06-06&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201901531&rft.externalDBID=10.1002%252Fadfm.201901531&rft.externalDocID=ADFM201901531 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |