Engineering Fe–Fe3C@Fe–N–C Active Sites and Hybrid Structures from Dual Metal–Organic Frameworks for Oxygen Reduction Reaction in H2–O2 Fuel Cell and Li–O2 Battery

Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal (PGM)‐free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF‐8 rearranged into highly N‐doped carbon, while...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced functional materials Ročník 29; číslo 23
Hlavní autori: Wang, Hao, Yin, Feng‐Xiang, Liu, Ning, Kou, Rong‐Hui, He, Xiao‐Bo, Sun, Cheng‐Jun, Chen, Biao‐Hua, Liu, Di‐Jia, Yin, Hua‐Qiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 06.06.2019
Predmet:
ISSN:1616-301X, 1616-3028
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal (PGM)‐free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF‐8 rearranged into highly N‐doped carbon, while Fe from MIL‐100(Fe) into N‐ligated atomic sites concurrently with a few Fe–Fe3C nanoparticles. Upon precise control of MOF compositions, the optimal catalyst is highly active for the ORR in half‐cells (0.88 V in base and 0.79 V versus RHE in acid in half‐wave potential), a proton exchange membrane fuel cell (0.76 W cm−2 in peak power density) and an aprotic Li–O2 battery (8749 mAh g−1 in discharge capacity), representing a state‐of‐the‐art PGM‐free ORR catalyst. In the material, amorphous carbon with partial graphitization ensures high active site exposure and fast charge transfer simultaneously. Macropores facilitate mass transport to the catalyst surface, followed by oxygen penetration in micropores to reach the infiltrated active sites. Further modeling simulations shed light on the true Fe–Fe3C contribution to the catalyst performance, suggesting Fe3C enhances oxygen affinity, while metallic Fe promotes *OH desorption as the rate‐determining step at the nearby Fe–N–C sites. These findings demonstrate MOFs as model system for rational design of electrocatalyst for energy‐based functional applications. An Fe–N–C catalyst is derived from dual metal–organic frameworks through facile pyrolysis, affording excellent oxygen reduction catalytic performance in alkaline/acidic half‐cells, a H2–O2 proton exchange membrane fuel cell, and a Li–O2 battery. The excellent catalytic performance benefits from density populated Fe–Fe3C@Fe–N–C dual active sites, hierarchical porosities for mass transport, and partial carbon graphitization for charge transfer.
AbstractList Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal (PGM)‐free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF‐8 rearranged into highly N‐doped carbon, while Fe from MIL‐100(Fe) into N‐ligated atomic sites concurrently with a few Fe–Fe3C nanoparticles. Upon precise control of MOF compositions, the optimal catalyst is highly active for the ORR in half‐cells (0.88 V in base and 0.79 V versus RHE in acid in half‐wave potential), a proton exchange membrane fuel cell (0.76 W cm−2 in peak power density) and an aprotic Li–O2 battery (8749 mAh g−1 in discharge capacity), representing a state‐of‐the‐art PGM‐free ORR catalyst. In the material, amorphous carbon with partial graphitization ensures high active site exposure and fast charge transfer simultaneously. Macropores facilitate mass transport to the catalyst surface, followed by oxygen penetration in micropores to reach the infiltrated active sites. Further modeling simulations shed light on the true Fe–Fe3C contribution to the catalyst performance, suggesting Fe3C enhances oxygen affinity, while metallic Fe promotes *OH desorption as the rate‐determining step at the nearby Fe–N–C sites. These findings demonstrate MOFs as model system for rational design of electrocatalyst for energy‐based functional applications.
Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal (PGM)‐free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF‐8 rearranged into highly N‐doped carbon, while Fe from MIL‐100(Fe) into N‐ligated atomic sites concurrently with a few Fe–Fe3C nanoparticles. Upon precise control of MOF compositions, the optimal catalyst is highly active for the ORR in half‐cells (0.88 V in base and 0.79 V versus RHE in acid in half‐wave potential), a proton exchange membrane fuel cell (0.76 W cm−2 in peak power density) and an aprotic Li–O2 battery (8749 mAh g−1 in discharge capacity), representing a state‐of‐the‐art PGM‐free ORR catalyst. In the material, amorphous carbon with partial graphitization ensures high active site exposure and fast charge transfer simultaneously. Macropores facilitate mass transport to the catalyst surface, followed by oxygen penetration in micropores to reach the infiltrated active sites. Further modeling simulations shed light on the true Fe–Fe3C contribution to the catalyst performance, suggesting Fe3C enhances oxygen affinity, while metallic Fe promotes *OH desorption as the rate‐determining step at the nearby Fe–N–C sites. These findings demonstrate MOFs as model system for rational design of electrocatalyst for energy‐based functional applications. An Fe–N–C catalyst is derived from dual metal–organic frameworks through facile pyrolysis, affording excellent oxygen reduction catalytic performance in alkaline/acidic half‐cells, a H2–O2 proton exchange membrane fuel cell, and a Li–O2 battery. The excellent catalytic performance benefits from density populated Fe–Fe3C@Fe–N–C dual active sites, hierarchical porosities for mass transport, and partial carbon graphitization for charge transfer.
Author Liu, Ning
Kou, Rong‐Hui
Yin, Hua‐Qiang
Sun, Cheng‐Jun
Liu, Di‐Jia
He, Xiao‐Bo
Chen, Biao‐Hua
Yin, Feng‐Xiang
Wang, Hao
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0003-0674-0811
  surname: Wang
  fullname: Wang, Hao
  organization: Argonne National Laboratory
– sequence: 2
  givenname: Feng‐Xiang
  orcidid: 0000-0003-3514-6707
  surname: Yin
  fullname: Yin, Feng‐Xiang
  email: yinfx@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
– sequence: 3
  givenname: Ning
  surname: Liu
  fullname: Liu, Ning
  organization: Beijing University of Technology
– sequence: 4
  givenname: Rong‐Hui
  surname: Kou
  fullname: Kou, Rong‐Hui
  organization: Argonne National Laboratory
– sequence: 5
  givenname: Xiao‐Bo
  surname: He
  fullname: He, Xiao‐Bo
  organization: Beijing University of Chemical Technology
– sequence: 6
  givenname: Cheng‐Jun
  surname: Sun
  fullname: Sun, Cheng‐Jun
  organization: Argonne National Laboratory
– sequence: 7
  givenname: Biao‐Hua
  surname: Chen
  fullname: Chen, Biao‐Hua
  email: chenbh@mail.buct.edu.cn
  organization: Beijing University of Technology
– sequence: 8
  givenname: Di‐Jia
  orcidid: 0000-0003-1747-028X
  surname: Liu
  fullname: Liu, Di‐Jia
  organization: Argonne National Laboratory
– sequence: 9
  givenname: Hua‐Qiang
  surname: Yin
  fullname: Yin, Hua‐Qiang
  organization: Tsinghua University
BookMark eNo9UU1PwkAU3BhMRPTqeRPP4H7Qlr2JhYoJSCKaeGu229dmsWxx24q9-R_8If4nf4ktGA4vb95k5s1hzlHH5AYQuqJkQAlhNzJONgNGqCDU4fQEdalL3T4nbNQ5Yvp6hs6LYk0I9Tw-7KKfqUm1AbDapDiA36_vALh_u0ePzfh4rEr9AXilSyiwNDGe1ZHVMV6VtlJlZRs2sfkGTyqZ4QWUMmtsS5tKoxUOrNzALrdvjSi3ePlZp2DwE8SNVectkgegDZ6x1shwUEGGfciyfdpcH9g7WZZg6wt0msisgMv_3UMvwfTZn_Xny_sHfzzvp5yOaN8FxoXiIycC6gmuElBcQUSEjAh1I8K44yZSSeGAIq6AWAgn5pErCVWSeRHvoevD363N3ysoynCdV9Y0kSFjfCicoSdEoxIH1U5nUIdbqzfS1iElYdtI2DYSHhsJx5Ngcbz4H3gaigY
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201901531
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM201901531
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21706010
– fundername: Advanced Catalysis and Green Manufacturing Collaborative Innovation Centre of Changzhou University
  funderid: ACGM2016‐06‐02; ACGM2016‐06‐03
– fundername: Fundamental Research Funds for the Central Universities
– fundername: Changzhou Sci & Tech Program
  funderid: CJ20159006; CJ20160007
– fundername: U.S. Department of Energy (DOE)
  funderid: DE‐AC02‐06CH11357
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
O8X
ID FETCH-LOGICAL-g3181-6e239c385be1793cfec3ceb09ab016b02356faca95ec069ed995d3b6a01ca27b3
IEDL.DBID DRFUL
ISSN 1616-301X
IngestDate Sun Nov 30 05:08:15 EST 2025
Wed Jan 22 16:40:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3181-6e239c385be1793cfec3ceb09ab016b02356faca95ec069ed995d3b6a01ca27b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0674-0811
0000-0003-3514-6707
0000-0003-1747-028X
OpenAccessLink https://www.osti.gov/biblio/1505647
PQID 2234954799
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2234954799
wiley_primary_10_1002_adfm_201901531_ADFM201901531
PublicationCentury 2000
PublicationDate June 6, 2019
PublicationDateYYYYMMDD 2019-06-06
PublicationDate_xml – month: 06
  year: 2019
  text: June 6, 2019
  day: 06
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 6
2017; 2
2011; 2
2015 2016; 9 138
2017; 4
2015; 51
2014 2016; 8 9
1976
1999 2010; 286 1
2011; 17
2013 2018; 6
2017; 9
2016 2017; 107 139
2018 2018 2014; 1 130 4
2015; 24
2015; 25
2016 2017; 138 9
2012; 3
2017 2017; 139 8
2015; 112
1991 2012; 113 134
2012; 6
2016; 25
2016 2018; 55 6
1985; 57
1964; 201
References_xml – start-page: 133
  year: 1976
– volume: 112
  start-page: 10629
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 9567
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55 6
  start-page: 1355 516
  year: 2016 2018
  publication-title: Angew. Chem., Int. Ed. J. Mater. Chem. A
– volume: 4
  start-page: 20
  year: 2017
  publication-title: Mater. Horiz.
– volume: 139 8
  start-page: 3336 15938
  year: 2017 2017
  publication-title: J. Am. Chem. Soc. Nat. Commun.
– volume: 107 139
  start-page: 248 453
  year: 2016 2017
  publication-title: Carbon J. Am. Chem. Soc.
– volume: 25
  start-page: 872
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 8 9
  start-page: 12660 3092
  year: 2014 2016
  publication-title: ACS Nano Energy Environ. Sci.
– volume: 24
  start-page: 45
  year: 2015
  publication-title: Interface Mag.
– volume: 17
  start-page: 2063
  year: 2011
  publication-title: Chem. ‐ Eur. J.
– volume: 138 9
  start-page: 3570 4587
  year: 2016 2017
  publication-title: J. Am. Chem. Soc. ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 110
  year: 2016
  publication-title: Nano Energy
– volume: 1 130 4
  start-page: 63 8661 1301735
  year: 2018 2018 2014
  publication-title: Nat. Catal. Angew. Chem. Adv. Energy Mater.
– volume: 113 134
  start-page: 9063 16654
  year: 1991 2012
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 3
  start-page: 3200
  year: 2012
  publication-title: Chem. Sci.
– volume: 57
  start-page: 603
  year: 1985
  publication-title: Pure Appl. Chem.
– volume: 6
  start-page: 121
  year: 2013 2018
  publication-title: AIMS Energy
– volume: 2
  start-page: 416
  year: 2011
  publication-title: Nat. Commun.
– volume: 6
  start-page: 9764
  year: 2012
  publication-title: ACS Nano
– volume: 51
  start-page: 2710
  year: 2015
  publication-title: Chem. Commun.
– volume: 201
  start-page: 1212
  year: 1964
  publication-title: Nature
– volume: 2
  start-page: 17090
  year: 2017
  publication-title: Nat. Energy
– volume: 6
  start-page: 7343
  year: 2015
  publication-title: Nat. Commun.
– volume: 9 138
  start-page: 12496 15046
  year: 2015 2016
  publication-title: ACS Nano J. Am. Chem. Soc.
– volume: 286 1
  start-page: 49c 2193
  year: 1999 2010
  publication-title: Science J. Phys. Chem. Lett.
SSID ssj0017734
Score 2.6537101
Snippet Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Amorphous materials
Batteries
Carbon
Catalysis
Catalysts
Cementite
Charge transfer
Computer simulation
Electrocatalysts
Fuel cells
Graphitization
H2–O2 fuel cell
Hybrid structures
Iron carbides
iron–nitrogen–carbon
Li–O2 battery
Materials science
Metal-organic frameworks
Nanoparticles
oxygen reduction reaction
Oxygen reduction reactions
Platinum
Proton exchange membrane fuel cells
Pyrolysis
Title Engineering Fe–Fe3C@Fe–N–C Active Sites and Hybrid Structures from Dual Metal–Organic Frameworks for Oxygen Reduction Reaction in H2–O2 Fuel Cell and Li–O2 Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201901531
https://www.proquest.com/docview/2234954799
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  issn: 1616-301X
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVQYYCBN-KtO7BGJE7ixBtVS9QBCuIhdYsc5wZVqgKiFNGNf-BD-Ce-hGu7LWWFIZEdxXGk-8hx7HPM2Emqo0DLIvIilMKLKjqlSsVeWHKlSwqRKqjsZhNJt5v2evJ6jsXv9CFmP9xMZNh8bQJcFcPTH9FQVVaGSW4_aIZIvcjJeeMGW2zfZPcXs5mEJHEzyyIwa7yC3lS40eenv5_wC2LOA1X7pcnW_v-O62x1gjKh6dxigy1gvclW5rQHt9jnXA0y_Hr_yDBsndlSl44WNG0qhFsCpUNQdQmdsaF3wa2VnB3ROB0MOQXaI-rqEgnFUzPH7dSQTRd90U2Pz3D1NiZPhRsjFGtcgUqOUQH9GjrcNOSQjXAALRwMbG8XfXfVKYCOt9l9dn7X6niT3Ru8B8oTgSeQh1KHaVygSQK6Qh1qLHypCoKZhdHZEZXSSsaofSGxlDIuw0IoP9CKJ0W4wxr1Y427DFAZlRwaKBJ6NAJxqtRphQEXlUi1r9QeO5yaLp-E4DAn3EODvyiRco9xa6T8yQl45E6qmefGPPnMPHmznV3Oavt_aXTAlk3ZLiUTh6xB9sAjtqRfX_rD5-OJa34DPo3rqQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbtswECWCJEDbRZp-giZNk1l0K0SiZErc1bAruKjtFPkA3gkUNQoMGEoQ10W96x16kNwpJ-kMKbvOtuhCAkmIooD56JGceRTiY2aTyOoyCRLUKkhqumXGdIK4ksZWZCJ1VLvDJtLxOJtM9Lc2mpBzYTw_xHrBjS3D-Ws2cF6QPvvLGmqqmlPJ3R-NM6l3EtIlUvKd_kV-PVxvJaSp31pWEQd5RZMVc2Moz56-4QnG3ESq7leTv_wPH7kv9lqcCV2vGK_EFjavxYsN9sE34mGjBjk-_vqdY9z75EpjunrQdc4QLgmWzsE0FQyWnOAFl450dkEzdeD0FOgvaKgREo6nbj6700K-Cvuih27v4fznknQVLpgqlpWBSj6nAqYNDCR3lJAvcAY9nM3caMOpb_UcoMu34jr_fNUbBO35DcENeYooUChjbeOsUyK7AVujjS2WoTYlAc2SmXZUbazRHbSh0lhp3aniUpkwskamZXwgtpvbBt8JQMM8OTRVJPzIFHGmslmNkVS1ymxozKE4XsmuaI1wXhDyoelfkmp9KKSTUnHnKTwKT9YsCxZPsRZP0e3no3Xt6F86nYpng6vRsBh-GX99L55zuwssU8dim2SDH8Su_fF9Or8_afX0D1Of75k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLambkJwMcYAsTE2X3AbLXFSJ76jarGK6LppP1LvIsc5RpWqbFopone8Aw-yd9qTcI6dlu4WcZHItuI40vnx5_icz4x9LGyWWFVlUQZKRpnDW2FMN0prYWyNJuIS5w-byMfjYjJRF200IeXCBH6I9Q83sgzvr8nA4a52p39ZQ03tKJXcz2iUSb2d0UkyHbY9uNQ3o_VWQp6HrWWZUJBXMlkxN8bi9OkbnmDMTaTqpxr98j985B7bbXEm7wXFeMW2oNlnLzbYB1-zh40a1_D467eGtP_Jl8Z49XnPO0N-hbB0zk1T8-GSErz4lSedXeBKnVN6Ch8scKgzQByP3UJ2p-V6FfaFD93e8_OfS9RVfklUsaQMWAo5FXza8KGgjoLrBcx4H2YzP9poGloDB-jyDbvRn6_7w6g9vyH6hp4iiSSIVNm06FZAbsA6sKmFKlamQqBZEdOOdMYa1QUbSwW1Ut06raSJE2tEXqVvWae5beAd42CIJweXiogfiSLO1LZwkAjpZGFjYw7Y0Up2ZWuE8xKRDy7_slypAya8lMq7QOFRBrJmUZJ4yrV4yt5An61rh__S6YQ9uxjocvRl_PU9e07NPq5MHrEOigY-sB374_t0fn_cqukf-AjvFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Fe%E2%80%93Fe3C%40Fe%E2%80%93N%E2%80%93C+Active+Sites+and+Hybrid+Structures+from+Dual+Metal%E2%80%93Organic+Frameworks+for+Oxygen+Reduction+Reaction+in+H2%E2%80%93O2+Fuel+Cell+and+Li%E2%80%93O2+Battery&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Hao&rft.au=Yin%2C+Feng%E2%80%90Xiang&rft.au=Liu%2C+Ning&rft.au=Kou%2C+Rong%E2%80%90Hui&rft.date=2019-06-06&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201901531&rft.externalDBID=10.1002%252Fadfm.201901531&rft.externalDocID=ADFM201901531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon