Countercurrent gas-solid trickle flow reactor with structured packing: Hydrodynamics and CaO-CO2 reaction
The sorption reaction CaO–CO2 was examined in a countercurrent gas–solid trickle flow reactor with regularly stacked packing at T = 500–600°C, pCO2 = 40–50 kPa, solid‐phase fluxes S = 0.3–0.5 kg m−2 s−1, and CaO particles of 500–710 μm in size. Sorption kinetics was evaluated by thermogravimetric (T...
Saved in:
| Published in: | AIChE journal Vol. 61; no. 5; pp. 1601 - 1612 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Blackwell Publishing Ltd
01.05.2015
American Institute of Chemical Engineers |
| Subjects: | |
| ISSN: | 0001-1541, 1547-5905 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The sorption reaction CaO–CO2 was examined in a countercurrent gas–solid trickle flow reactor with regularly stacked packing at T = 500–600°C, pCO2 = 40–50 kPa, solid‐phase fluxes S = 0.3–0.5 kg m−2 s−1, and CaO particles of 500–710 μm in size. Sorption kinetics was evaluated by thermogravimetric (TG) technique. The random pore model was used for the description of the carbonization reaction. Hydrodynamic characteristics of gas–solid trickle flow were estimated at room temperature and ambient pressure. Plug flow model of both gas and solid‐phase, with the parameters obtained from TG and hydrodynamics experiments, satisfactorily described the sorption process in countercurrent gas–solid trickle flow reactor. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1601–1612, 2015 |
|---|---|
| AbstractList | The sorption reaction CaO–CO2 was examined in a countercurrent gas–solid trickle flow reactor with regularly stacked packing at T = 500–600°C, pCO2 = 40–50 kPa, solid‐phase fluxes S = 0.3–0.5 kg m−2 s−1, and CaO particles of 500–710 μm in size. Sorption kinetics was evaluated by thermogravimetric (TG) technique. The random pore model was used for the description of the carbonization reaction. Hydrodynamic characteristics of gas–solid trickle flow were estimated at room temperature and ambient pressure. Plug flow model of both gas and solid‐phase, with the parameters obtained from TG and hydrodynamics experiments, satisfactorily described the sorption process in countercurrent gas–solid trickle flow reactor. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1601–1612, 2015 The sorption reaction CaO-CO2 was examined in a countercurrent gas-solid trickle flow reactor with regularly stacked packing at T=500-600°C, pCO2=40-50 kPa, solid-phase fluxes S=0.3-0.5 kg m-2 s-1, and CaO particles of 500-710 µm in size. Sorption kinetics was evaluated by thermogravimetric (TG) technique. The random pore model was used for the description of the carbonization reaction. Hydrodynamic characteristics of gas-solid trickle flow were estimated at room temperature and ambient pressure. Plug flow model of both gas and solid-phase, with the parameters obtained from TG and hydrodynamics experiments, satisfactorily described the sorption process in countercurrent gas-solid trickle flow reactor. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1601-1612, 2015 |
| Author | Obradović, Ana Levec, Janez |
| Author_xml | – sequence: 1 givenname: Ana surname: Obradović fullname: Obradović, Ana organization: Laboratory for Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia – sequence: 2 givenname: Janez surname: Levec fullname: Levec, Janez email: janez.levec@ki.si organization: Laboratory for Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia |
| BookMark | eNo9kF1LwzAYhYMouKkX_oOA192SZm1S76ToHAwHKuwyvEvSma0mM0mZ-_fWTbx6PzjPOXCG6Nx5ZxC6pWRECcnHYNWITjijZ2hAiwnPiooU52hACKFZ_6CXaBjjpr9yLvIBsrXvXDJBdSEYl_AaYhZ9azVOwapta3DT-j0OBlTyAe9t-sAxhU6lLhiNd6C21q3v8fNBB68PDj6tihicxjUssnqRn1Dr3TW6aKCN5uZvXqH3p8f3-jmbL6az-mGerfNK0IzrqtJlblgObCUaqJiCFRMcGGPErGhpGqKhEFoZZlSuwFAQBeFV2Sjeq6_Q3cl2F_xXZ2KSG98F1ydKKgQhJeNF2avGJ9XetuYgd8F-QjhISuRvi7JvUR5blA-z-rj0RHYibEzm-5-AsJUl7z3l8mUqX9_E9HXKl7JmPxx1eXY |
| CODEN | AICEAC |
| ContentType | Journal Article |
| Copyright | 2015 American Institute of Chemical Engineers |
| Copyright_xml | – notice: 2015 American Institute of Chemical Engineers |
| DBID | BSCLL 7ST 7U5 8FD C1K L7M SOI |
| DOI | 10.1002/aic.14731 |
| DatabaseName | Istex Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1547-5905 |
| EndPage | 1612 |
| ExternalDocumentID | 4321093459 AIC14731 ark_67375_WNG_RS8GRG7W_C |
| Genre | article |
| GrantInformation_xml | – fundername: Slovenian Research Agency (ARRS) funderid: Program P2–0152 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHQN AAIHA AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJIA ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYN AEUYR AEYWJ AFBPY AFFHD AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 S0X SAMSI SUPJJ TAE TN5 TUS UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT ALUQN PUEGO 7ST 7U5 8FD C1K L7M SOI |
| ID | FETCH-LOGICAL-g2981-7d99d62e32a3b8fa93cab387a3330eb16ef0da58dce3ec2cae1a850796fc7a93 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354696200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-1541 |
| IngestDate | Fri Jul 25 11:00:29 EDT 2025 Sun Sep 21 06:26:40 EDT 2025 Tue Nov 11 03:33:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-g2981-7d99d62e32a3b8fa93cab387a3330eb16ef0da58dce3ec2cae1a850796fc7a93 |
| Notes | Slovenian Research Agency (ARRS) - No. Program P2-0152 ark:/67375/WNG-RS8GRG7W-C ArticleID:AIC14731 istex:C9D4F4621A63B8528DA602EE5F444E5A95C644E3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1880063756 |
| PQPubID | 7879 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_1880063756 wiley_primary_10_1002_aic_14731_AIC14731 istex_primary_ark_67375_WNG_RS8GRG7W_C |
| PublicationCentury | 2000 |
| PublicationDate | May 2015 |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | AIChE journal |
| PublicationTitleAlternate | AIChE J |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd American Institute of Chemical Engineers |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: American Institute of Chemical Engineers |
| References | Heesink ABM, Prins W, van Swaaij WPM. A grain size distribution model for non-catalytic gas-solid reactions. Chem Eng J. 1993;53:25-37. Grasa GS, Abanades JC. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Ind Eng Chem Res. 2006;45:8846-8851. Ranz WE, Marshall WR. Evaporation from drops. Chem Eng Prog. 1952;48:141-146;173-180. Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A twin fluid-bed reactor for removal of CO2 from combustion processes. Chem Eng Res Des. 1999;77:62-68. Verver AB, van Swaaij WPM. The hydrodynamic behaviour of gas-solid trickle flow over a regularly stacked packing. Powder Technol. 1986;45:119-132. Kiel JHA, Prins W, van Swaaij WPM. Modelling of non-catalytic reactions in a gas-solid trickle flow reactor: dry, regenerative flue gas desulphurisation using a silica-supported copper oxide sorbent. Chem Eng Sci. 1992;47:4271-4286. Johnsen K, Grace JR, Elnashaie SSEH, Kolbeinsen L, Eriksen D. Modeling of sorption-enhanced steam reforming in a dual fluidized bubbling bed reactor. Ind Eng Chem Res. 2006;45:4133-4144. Bird RB, Stewart WE, Lightfoot, EN. Transport Phenomena. Wiley International Edition, Wiley, New York, 1960. Grasa GS, Murillo R, Alonso M, Abanades JC. Application of the random pore model to the carbonation cyclic reaction. AIChE J. 2009;55(5):1246-1255. Bhatia SK, Perlmutter DD. Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE J. 1983;29:79-86. Obradović A, Likozar B, Levec J. Catalytic surface development of novel nickel plate catalyst with combined thermally annealed platinum and alumina coatings for steam methane reforming, Int J Hydrogen Energy. 2013;38:1419-1429. Bhatia SK, Perlmutter DD. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J. 1981;27:247-254. Nikačević NM, Duduković AP. Solids residence time distribution in gas-flowing solids-fixed bed contactors. Ind Eng Chem Res. 2005;44:6509-6517. Zhiming Z, Xu P, Xie M, Cheng Z, Yuan W. Modeling of the carbonation kinetics of a synthetic CaO-based sorbent. Chem Eng Sci. 2013;95:283-290. Wakao N, Smith JM. Diffusion in catalyst pellets. Chem Eng Sci. 1962;17:825-834. Finlayson B. The Method of Weighted Residuals and Variational Principles. London: Academic Press, 1972. Grasa GS, Abanades JC, Alonso M, González B. Reactivity of highly cycled particles of CaO in a carbonation/calcination loop. Chem Eng J. 2008;137:561-567. Lee DK. An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chem Eng J. 2004;100:71-77. Westerterp KR, Kuczynski M. Gas-solid trickle flow hydrodynamics in a packed column. Chem Eng Sci. 1987;42:1539-1551. Dennis JS, Hayhurst AN. The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds. Chem Eng Sci. 1987;42:2361-2372. Reid RC, Prausnitz JM, Poling BE. The Properties of Gases and Liquids, 4th ed. McGraw-Hill, Inc., New York, 1987. Harrison DP. Sorption-enhanced hydrogen production: a review. Ind Eng Chem Res. 2008;47:6486-6501. Verver AB, van Swaaij WPM. The gas-solid trickle-flow reactor for the catalytic oxidation of hydrogen sulphide: a trickle-phase model. Chem Eng Sci. 1987;42:435-445. Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G. Static mixers in the process industries-a review. Trans IchemE. 2003;81:787-826. Obradović A, Likozar B, Levec J. Steam methane reforming over Ni-based pellet-type and Pt/Ni/Al2O3 plate-type catalyst: intrinsic kinetics study. Ind Eng Chem Res. 2013;52:13597-13606. Bhatia SK, Perlmutter DD. A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J. 1980;26:379-386. Roes AWM, van Swaaij WPM. Hydrodynamic behaviour of a gas-solid counter-current packed column at trickle flow. Chem Eng J. 1979;17:81-89. Symonds RT, Lua DY, Macchi A, Hughes RW, Anthony EJ. CO2 capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: modelling and bench-scale testing. Chem Eng Sci. 2009;64:3536-3543. Alvarez D, Abanades JC. Determination of the critical product layer thickness in the reaction of CaO with CO2. Ind Eng Chem Res. 2005;44:5608-5615. 1979; 17 2004; 100 1980; 26 2003; 81 2009; 64 1962; 17 1981; 27 1972 2005; 44 2009; 55 1987; 42 2013; 38 1952; 48 2006; 45 1986; 45 2013; 95 1993; 53 2013; 52 2008; 47 1987 1999; 77 2008; 137 1960 1992; 47 1983; 29 |
| References_xml | – reference: Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A twin fluid-bed reactor for removal of CO2 from combustion processes. Chem Eng Res Des. 1999;77:62-68. – reference: Roes AWM, van Swaaij WPM. Hydrodynamic behaviour of a gas-solid counter-current packed column at trickle flow. Chem Eng J. 1979;17:81-89. – reference: Symonds RT, Lua DY, Macchi A, Hughes RW, Anthony EJ. CO2 capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: modelling and bench-scale testing. Chem Eng Sci. 2009;64:3536-3543. – reference: Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G. Static mixers in the process industries-a review. Trans IchemE. 2003;81:787-826. – reference: Grasa GS, Abanades JC, Alonso M, González B. Reactivity of highly cycled particles of CaO in a carbonation/calcination loop. Chem Eng J. 2008;137:561-567. – reference: Dennis JS, Hayhurst AN. The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds. Chem Eng Sci. 1987;42:2361-2372. – reference: Obradović A, Likozar B, Levec J. Catalytic surface development of novel nickel plate catalyst with combined thermally annealed platinum and alumina coatings for steam methane reforming, Int J Hydrogen Energy. 2013;38:1419-1429. – reference: Harrison DP. Sorption-enhanced hydrogen production: a review. Ind Eng Chem Res. 2008;47:6486-6501. – reference: Verver AB, van Swaaij WPM. The hydrodynamic behaviour of gas-solid trickle flow over a regularly stacked packing. Powder Technol. 1986;45:119-132. – reference: Lee DK. An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chem Eng J. 2004;100:71-77. – reference: Bhatia SK, Perlmutter DD. Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE J. 1983;29:79-86. – reference: Ranz WE, Marshall WR. Evaporation from drops. Chem Eng Prog. 1952;48:141-146;173-180. – reference: Verver AB, van Swaaij WPM. The gas-solid trickle-flow reactor for the catalytic oxidation of hydrogen sulphide: a trickle-phase model. Chem Eng Sci. 1987;42:435-445. – reference: Bhatia SK, Perlmutter DD. A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J. 1980;26:379-386. – reference: Finlayson B. The Method of Weighted Residuals and Variational Principles. London: Academic Press, 1972. – reference: Alvarez D, Abanades JC. Determination of the critical product layer thickness in the reaction of CaO with CO2. Ind Eng Chem Res. 2005;44:5608-5615. – reference: Westerterp KR, Kuczynski M. Gas-solid trickle flow hydrodynamics in a packed column. Chem Eng Sci. 1987;42:1539-1551. – reference: Kiel JHA, Prins W, van Swaaij WPM. Modelling of non-catalytic reactions in a gas-solid trickle flow reactor: dry, regenerative flue gas desulphurisation using a silica-supported copper oxide sorbent. Chem Eng Sci. 1992;47:4271-4286. – reference: Grasa GS, Murillo R, Alonso M, Abanades JC. Application of the random pore model to the carbonation cyclic reaction. AIChE J. 2009;55(5):1246-1255. – reference: Heesink ABM, Prins W, van Swaaij WPM. A grain size distribution model for non-catalytic gas-solid reactions. Chem Eng J. 1993;53:25-37. – reference: Nikačević NM, Duduković AP. Solids residence time distribution in gas-flowing solids-fixed bed contactors. Ind Eng Chem Res. 2005;44:6509-6517. – reference: Obradović A, Likozar B, Levec J. Steam methane reforming over Ni-based pellet-type and Pt/Ni/Al2O3 plate-type catalyst: intrinsic kinetics study. Ind Eng Chem Res. 2013;52:13597-13606. – reference: Reid RC, Prausnitz JM, Poling BE. The Properties of Gases and Liquids, 4th ed. McGraw-Hill, Inc., New York, 1987. – reference: Zhiming Z, Xu P, Xie M, Cheng Z, Yuan W. Modeling of the carbonation kinetics of a synthetic CaO-based sorbent. Chem Eng Sci. 2013;95:283-290. – reference: Grasa GS, Abanades JC. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Ind Eng Chem Res. 2006;45:8846-8851. – reference: Johnsen K, Grace JR, Elnashaie SSEH, Kolbeinsen L, Eriksen D. Modeling of sorption-enhanced steam reforming in a dual fluidized bubbling bed reactor. Ind Eng Chem Res. 2006;45:4133-4144. – reference: Wakao N, Smith JM. Diffusion in catalyst pellets. Chem Eng Sci. 1962;17:825-834. – reference: Bird RB, Stewart WE, Lightfoot, EN. Transport Phenomena. Wiley International Edition, Wiley, New York, 1960. – reference: Bhatia SK, Perlmutter DD. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J. 1981;27:247-254. – volume: 100 start-page: 71 year: 2004 end-page: 77 article-title: An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide publication-title: Chem Eng J. – volume: 44 start-page: 6509 year: 2005 end-page: 6517 article-title: Solids residence time distribution in gas‐flowing solids‐fixed bed contactors publication-title: Ind Eng Chem Res. – volume: 53 start-page: 25–37 year: 1993 article-title: A grain size distribution model for non‐catalytic gas–solid reactions publication-title: Chem Eng J. – year: 1960 – year: 1987 – volume: 45 start-page: 8846 year: 2006 end-page: 8851 article-title: CO capture capacity of CaO in long series of carbonation/calcination cycles publication-title: Ind Eng Chem Res. – volume: 17 start-page: 825 year: 1962 end-page: 834 article-title: Diffusion in catalyst pellets publication-title: Chem Eng Sci. – volume: 47 start-page: 4271 year: 1992 end-page: 4286 article-title: Modelling of non‐catalytic reactions in a gas–solid trickle flow reactor: dry, regenerative flue gas desulphurisation using a silica‐supported copper oxide sorbent publication-title: Chem Eng Sci. – volume: 42 start-page: 435 year: 1987 end-page: 445 article-title: The gas–solid trickle‐flow reactor for the catalytic oxidation of hydrogen sulphide: a trickle‐phase model publication-title: Chem Eng Sci. – volume: 81 start-page: 787 year: 2003 end-page: 826 article-title: Static mixers in the process industries—a review publication-title: Trans IchemE. – volume: 137 start-page: 561 year: 2008 end-page: 567 article-title: Reactivity of highly cycled particles of CaO in a carbonation/calcination loop publication-title: Chem Eng J. – volume: 42 start-page: 1539 year: 1987 end-page: 1551 article-title: Gas–solid trickle flow hydrodynamics in a packed column publication-title: Chem Eng Sci. – volume: 48 start-page: 141 year: 1952 end-page: 146;173–180 article-title: Evaporation from drops publication-title: Chem Eng Prog. – volume: 44 start-page: 5608 year: 2005 end-page: 5615 article-title: Determination of the critical product layer thickness in the reaction of CaO with CO publication-title: Ind Eng Chem Res. – volume: 27 start-page: 247 year: 1981 end-page: 254 article-title: A random pore model for fluid–solid reactions: II. Diffusion and transport effects publication-title: AIChE J. – volume: 64 start-page: 3536 year: 2009 end-page: 3543 article-title: CO capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: modelling and bench‐scale testing publication-title: Chem Eng Sci. – volume: 55 start-page: 1246 issue: 5 year: 2009 end-page: 1255 article-title: Application of the random pore model to the carbonation cyclic reaction publication-title: AIChE J. – volume: 42 start-page: 2361 year: 1987 end-page: 2372 article-title: The effect of CO on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds publication-title: Chem Eng Sci. – volume: 26 start-page: 379 year: 1980 end-page: 386 article-title: A random pore model for fluid–solid reactions: I. Isothermal, kinetic control publication-title: AIChE J. – volume: 95 start-page: 283 year: 2013 end-page: 290 article-title: Modeling of the carbonation kinetics of a synthetic CaO‐based sorbent publication-title: Chem Eng Sci. – year: 1972 – volume: 52 start-page: 13597 year: 2013 end-page: 13606 article-title: Steam methane reforming over Ni‐based pellet‐type and Pt/Ni/Al O plate‐type catalyst: intrinsic kinetics study publication-title: Ind Eng Chem Res. – volume: 17 start-page: 81 year: 1979 end-page: 89 article-title: Hydrodynamic behaviour of a gas–solid counter‐current packed column at trickle flow publication-title: Chem Eng J. – volume: 38 start-page: 1419 year: 2013 end-page: 1429 article-title: Catalytic surface development of novel nickel plate catalyst with combined thermally annealed platinum and alumina coatings for steam methane reforming publication-title: Int J Hydrogen Energy – volume: 45 start-page: 4133 year: 2006 end-page: 4144 article-title: Modeling of sorption‐enhanced steam reforming in a dual fluidized bubbling bed reactor publication-title: Ind Eng Chem Res. – volume: 47 start-page: 6486 year: 2008 end-page: 6501 article-title: Sorption‐enhanced hydrogen production: a review publication-title: Ind Eng Chem Res. – volume: 29 start-page: 79 year: 1983 end-page: 86 article-title: Effect of the product layer on the kinetics of the CO –lime reaction publication-title: AIChE J. – volume: 45 start-page: 119 year: 1986 end-page: 132 article-title: The hydrodynamic behaviour of gas–solid trickle flow over a regularly stacked packing publication-title: Powder Technol. – volume: 77 start-page: 62 year: 1999 end-page: 68 article-title: A twin fluid‐bed reactor for removal of CO from combustion processes publication-title: Chem Eng Res Des. |
| SSID | ssj0012782 |
| Score | 2.1419628 |
| Snippet | The sorption reaction CaO–CO2 was examined in a countercurrent gas–solid trickle flow reactor with regularly stacked packing at T = 500–600°C, pCO2 = 40–50... The sorption reaction CaO-CO2 was examined in a countercurrent gas-solid trickle flow reactor with regularly stacked packing at T=500-600°C, pCO2=40-50 kPa,... |
| SourceID | proquest wiley istex |
| SourceType | Aggregation Database Publisher |
| StartPage | 1601 |
| SubjectTerms | CaO-CO2 reaction Carbon dioxide countercurrent gas-solid trickle flow Hydrodynamics Plug flow plug flow model Reactors Sorption structured packing |
| Title | Countercurrent gas-solid trickle flow reactor with structured packing: Hydrodynamics and CaO-CO2 reaction |
| URI | https://api.istex.fr/ark:/67375/WNG-RS8GRG7W-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.14731 https://www.proquest.com/docview/1880063756 |
| Volume | 61 |
| WOSCitedRecordID | wos000354696200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VWw5w4I26UJAPCHGJmtib2IZTFdgtUrVFS1F7syb2pFq1bNGG543_wD_klzCOd5dyQ-KWg21F88o3k5nPAE8bbcnnSmbY4igbBWoyLCh2AlCr2oAlhZ7E9VBPp-b01L7dgpfrWZjED7EpuEXP6ON1dHBsur0_pKE49-zmOs5Qb0u223IA269m4_eHm58IUptEFs4ZMyOFYk0slMu9zWbGpFGc3_4CmFdhav-dGd_6rze8DTdX8FLsJ3u4A1u0uAs3rpAO3oMPcQydpekTM5M4w-7Xj59sgvMgIl3_-QWJ9uLyq2A4GSv6IpZqReKZ_bykIDjLjvX1F-Lge-Dwm6607wQugqjxiM-qj2TazDq_D8fj18f1Qba6dCE7k9YUmQ7WhkqSkqga06JVHhtlNCqlcg7sFbU5q9AET4q89EgFGgaVNg4N8eoHMFhcLmgHhC-Qk7HgvSU10o2xFVWofShVHhjSqyE860XvPiZeDYfL89hmpkt3Mp242TszmU30iauHsLvWjVt5WOcijxzDK11WQ3jea2FzTmJilo7l73r5u_03df_w8N-XPoLrjI3K1Nu4CwOWMj2Ga_7Lp3m3fLIytd8MN9t1 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5VbSXgAOUlQh_4gBCXVXft7NquuFRLk1SEFIWg9mbN2t4qaklRArTc-h_6D_kljNdJWm5I3PZgW6t57TezM58BXldSe5sKnmCN7aTtfJVg5kMngK9F7TD3riFx7cvBQJ2c6E8r8G4xCxP5IZYFt-AZTbwODh4K0ru3rKE4tuTnMgxRr7XJjMi-194PO1_6y78IXKrIFk4pM0GFbMEslPLd5WYCpUGeV38hzLs4tfnQdB793ytuwMM5wGT70SIew4qfPIEHd2gHn8LXMIhO8rSRm4md4uz39Q0Z4dixQNh_du5ZfX5xyQhQhpo-C8VaFplmf0y9Y5Rnhwr7Huv9chSA46X2M4YTx0o8orPKIx43k9afwahzMCp7yfzaheSUa5Ul0mntCu4FR1GpGrWwWAklUQiRUmgvfJ2SEpWzXnjLLfoMFcFKHcaGaPVzWJ1cTPwLYDZDSsectdqLtqyULnyB0rpcpI5AvWjBm0b25ltk1jA4PQuNZjI3x4OuGX5W3WFXHpuyBVsL5Zi5j81MYJIjgCXzogVvGzUsz4lczNyQ_E0jf7N_WDYPL_996Su41xt97Jv-4eDDJtwnpJTHTsctWCWJ-21Ytz-_j2fTnbnd_QEred9l |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6hUFVw6AuqptDiQ1VxWbFrZ9d21QtamoAaBZSC4GZ57VkUAQElfXHrf-g_7C_peJ2kcEPqbQ-2tZrXfjPr-QbgXSU1ulTwxNa2k3Q8VonNMNwEwFrU3uboGxLXvhwM1NmZPlqCj_NemMgPsSi4Bc9o4nVwcLzx9c4_1lA7cuTnMjRRL3fCEJkWLO8Nuyf9xV8ELlVkC6eUmaBCNmcWSvnOYjOB0iDPn_cQ5l2c2nxouk__7xWfwZMZwGS70SKewxKOX8DqHdrBNbgKjegkTxe5mdi5nf759ZuMcORZIOy_uERWX17_YAQoQ02fhWIti0yz3yboGeXZocL-ge3fegrAcaj9lNmxZ6U9pLPKQx43k9bX4bj76bjcT2ZjF5JzrlWWSK-1LzgKbkWlaquFs5VQ0gohUgrtBdYpKVF5hwIddxYzqwhW6tA2RKtfQmt8PcZXwFxmKR3zzmkUHVkpXWBhpfO5SD2BetGG943szU1k1jB2chEumsncnA56ZvhF9YY9eWrKNmzOlWNmPjY1gUmOAJbMizZsN2pYnBO5mLkh-ZtG_mb3oGweXj986RY8Ptrrmv7B4PMGrBBQyuNFx01okcDxDTxy37-OppO3M7P7C-hc3uA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Countercurrent+gas%E2%80%93solid+trickle+flow+reactor+with+structured+packing%3A+Hydrodynamics+and+CaO%E2%80%93CO2+reaction&rft.jtitle=AIChE+journal&rft.au=Obradovi%C4%87%2C+Ana&rft.au=Levec%2C+Janez&rft.date=2015-05-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=61&rft.issue=5&rft.spage=1601&rft.epage=1612&rft_id=info:doi/10.1002%2Faic.14731&rft.externalDBID=10.1002%252Faic.14731&rft.externalDocID=AIC14731 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |