Countercurrent gas-solid trickle flow reactor with structured packing: Hydrodynamics and CaO-CO2 reaction

The sorption reaction CaO–CO2 was examined in a countercurrent gas–solid trickle flow reactor with regularly stacked packing at T = 500–600°C, pCO2 = 40–50 kPa, solid‐phase fluxes S = 0.3–0.5 kg m−2 s−1, and CaO particles of 500–710 μm in size. Sorption kinetics was evaluated by thermogravimetric (T...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal Vol. 61; no. 5; pp. 1601 - 1612
Main Authors: Obradović, Ana, Levec, Janez
Format: Journal Article
Language:English
Published: New York Blackwell Publishing Ltd 01.05.2015
American Institute of Chemical Engineers
Subjects:
ISSN:0001-1541, 1547-5905
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The sorption reaction CaO–CO2 was examined in a countercurrent gas–solid trickle flow reactor with regularly stacked packing at T = 500–600°C, pCO2 = 40–50 kPa, solid‐phase fluxes S = 0.3–0.5 kg m−2 s−1, and CaO particles of 500–710 μm in size. Sorption kinetics was evaluated by thermogravimetric (TG) technique. The random pore model was used for the description of the carbonization reaction. Hydrodynamic characteristics of gas–solid trickle flow were estimated at room temperature and ambient pressure. Plug flow model of both gas and solid‐phase, with the parameters obtained from TG and hydrodynamics experiments, satisfactorily described the sorption process in countercurrent gas–solid trickle flow reactor. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1601–1612, 2015
AbstractList The sorption reaction CaO–CO2 was examined in a countercurrent gas–solid trickle flow reactor with regularly stacked packing at T = 500–600°C, pCO2 = 40–50 kPa, solid‐phase fluxes S = 0.3–0.5 kg m−2 s−1, and CaO particles of 500–710 μm in size. Sorption kinetics was evaluated by thermogravimetric (TG) technique. The random pore model was used for the description of the carbonization reaction. Hydrodynamic characteristics of gas–solid trickle flow were estimated at room temperature and ambient pressure. Plug flow model of both gas and solid‐phase, with the parameters obtained from TG and hydrodynamics experiments, satisfactorily described the sorption process in countercurrent gas–solid trickle flow reactor. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1601–1612, 2015
The sorption reaction CaO-CO2 was examined in a countercurrent gas-solid trickle flow reactor with regularly stacked packing at T=500-600°C, pCO2=40-50 kPa, solid-phase fluxes S=0.3-0.5 kg m-2 s-1, and CaO particles of 500-710 µm in size. Sorption kinetics was evaluated by thermogravimetric (TG) technique. The random pore model was used for the description of the carbonization reaction. Hydrodynamic characteristics of gas-solid trickle flow were estimated at room temperature and ambient pressure. Plug flow model of both gas and solid-phase, with the parameters obtained from TG and hydrodynamics experiments, satisfactorily described the sorption process in countercurrent gas-solid trickle flow reactor. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1601-1612, 2015
Author Obradović, Ana
Levec, Janez
Author_xml – sequence: 1
  givenname: Ana
  surname: Obradović
  fullname: Obradović, Ana
  organization: Laboratory for Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
– sequence: 2
  givenname: Janez
  surname: Levec
  fullname: Levec, Janez
  email: janez.levec@ki.si
  organization: Laboratory for Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
BookMark eNo9kF1LwzAYhYMouKkX_oOA192SZm1S76ToHAwHKuwyvEvSma0mM0mZ-_fWTbx6PzjPOXCG6Nx5ZxC6pWRECcnHYNWITjijZ2hAiwnPiooU52hACKFZ_6CXaBjjpr9yLvIBsrXvXDJBdSEYl_AaYhZ9azVOwapta3DT-j0OBlTyAe9t-sAxhU6lLhiNd6C21q3v8fNBB68PDj6tihicxjUssnqRn1Dr3TW6aKCN5uZvXqH3p8f3-jmbL6az-mGerfNK0IzrqtJlblgObCUaqJiCFRMcGGPErGhpGqKhEFoZZlSuwFAQBeFV2Sjeq6_Q3cl2F_xXZ2KSG98F1ydKKgQhJeNF2avGJ9XetuYgd8F-QjhISuRvi7JvUR5blA-z-rj0RHYibEzm-5-AsJUl7z3l8mUqX9_E9HXKl7JmPxx1eXY
CODEN AICEAC
ContentType Journal Article
Copyright 2015 American Institute of Chemical Engineers
Copyright_xml – notice: 2015 American Institute of Chemical Engineers
DBID BSCLL
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.14731
DatabaseName Istex
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 1612
ExternalDocumentID 4321093459
AIC14731
ark_67375_WNG_RS8GRG7W_C
Genre article
GrantInformation_xml – fundername: Slovenian Research Agency (ARRS)
  funderid: Program P2–0152
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFHD
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
ALUQN
PUEGO
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-g2981-7d99d62e32a3b8fa93cab387a3330eb16ef0da58dce3ec2cae1a850796fc7a93
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354696200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-1541
IngestDate Fri Jul 25 11:00:29 EDT 2025
Sun Sep 21 06:26:40 EDT 2025
Tue Nov 11 03:33:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2981-7d99d62e32a3b8fa93cab387a3330eb16ef0da58dce3ec2cae1a850796fc7a93
Notes Slovenian Research Agency (ARRS) - No. Program P2-0152
ark:/67375/WNG-RS8GRG7W-C
ArticleID:AIC14731
istex:C9D4F4621A63B8528DA602EE5F444E5A95C644E3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880063756
PQPubID 7879
PageCount 12
ParticipantIDs proquest_journals_1880063756
wiley_primary_10_1002_aic_14731_AIC14731
istex_primary_ark_67375_WNG_RS8GRG7W_C
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2015
Publisher Blackwell Publishing Ltd
American Institute of Chemical Engineers
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Institute of Chemical Engineers
References Heesink ABM, Prins W, van Swaaij WPM. A grain size distribution model for non-catalytic gas-solid reactions. Chem Eng J. 1993;53:25-37.
Grasa GS, Abanades JC. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Ind Eng Chem Res. 2006;45:8846-8851.
Ranz WE, Marshall WR. Evaporation from drops. Chem Eng Prog. 1952;48:141-146;173-180.
Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A twin fluid-bed reactor for removal of CO2 from combustion processes. Chem Eng Res Des. 1999;77:62-68.
Verver AB, van Swaaij WPM. The hydrodynamic behaviour of gas-solid trickle flow over a regularly stacked packing. Powder Technol. 1986;45:119-132.
Kiel JHA, Prins W, van Swaaij WPM. Modelling of non-catalytic reactions in a gas-solid trickle flow reactor: dry, regenerative flue gas desulphurisation using a silica-supported copper oxide sorbent. Chem Eng Sci. 1992;47:4271-4286.
Johnsen K, Grace JR, Elnashaie SSEH, Kolbeinsen L, Eriksen D. Modeling of sorption-enhanced steam reforming in a dual fluidized bubbling bed reactor. Ind Eng Chem Res. 2006;45:4133-4144.
Bird RB, Stewart WE, Lightfoot, EN. Transport Phenomena. Wiley International Edition, Wiley, New York, 1960.
Grasa GS, Murillo R, Alonso M, Abanades JC. Application of the random pore model to the carbonation cyclic reaction. AIChE J. 2009;55(5):1246-1255.
Bhatia SK, Perlmutter DD. Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE J. 1983;29:79-86.
Obradović A, Likozar B, Levec J. Catalytic surface development of novel nickel plate catalyst with combined thermally annealed platinum and alumina coatings for steam methane reforming, Int J Hydrogen Energy. 2013;38:1419-1429.
Bhatia SK, Perlmutter DD. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J. 1981;27:247-254.
Nikačević NM, Duduković AP. Solids residence time distribution in gas-flowing solids-fixed bed contactors. Ind Eng Chem Res. 2005;44:6509-6517.
Zhiming Z, Xu P, Xie M, Cheng Z, Yuan W. Modeling of the carbonation kinetics of a synthetic CaO-based sorbent. Chem Eng Sci. 2013;95:283-290.
Wakao N, Smith JM. Diffusion in catalyst pellets. Chem Eng Sci. 1962;17:825-834.
Finlayson B. The Method of Weighted Residuals and Variational Principles. London: Academic Press, 1972.
Grasa GS, Abanades JC, Alonso M, González B. Reactivity of highly cycled particles of CaO in a carbonation/calcination loop. Chem Eng J. 2008;137:561-567.
Lee DK. An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chem Eng J. 2004;100:71-77.
Westerterp KR, Kuczynski M. Gas-solid trickle flow hydrodynamics in a packed column. Chem Eng Sci. 1987;42:1539-1551.
Dennis JS, Hayhurst AN. The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds. Chem Eng Sci. 1987;42:2361-2372.
Reid RC, Prausnitz JM, Poling BE. The Properties of Gases and Liquids, 4th ed. McGraw-Hill, Inc., New York, 1987.
Harrison DP. Sorption-enhanced hydrogen production: a review. Ind Eng Chem Res. 2008;47:6486-6501.
Verver AB, van Swaaij WPM. The gas-solid trickle-flow reactor for the catalytic oxidation of hydrogen sulphide: a trickle-phase model. Chem Eng Sci. 1987;42:435-445.
Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G. Static mixers in the process industries-a review. Trans IchemE. 2003;81:787-826.
Obradović A, Likozar B, Levec J. Steam methane reforming over Ni-based pellet-type and Pt/Ni/Al2O3 plate-type catalyst: intrinsic kinetics study. Ind Eng Chem Res. 2013;52:13597-13606.
Bhatia SK, Perlmutter DD. A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J. 1980;26:379-386.
Roes AWM, van Swaaij WPM. Hydrodynamic behaviour of a gas-solid counter-current packed column at trickle flow. Chem Eng J. 1979;17:81-89.
Symonds RT, Lua DY, Macchi A, Hughes RW, Anthony EJ. CO2 capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: modelling and bench-scale testing. Chem Eng Sci. 2009;64:3536-3543.
Alvarez D, Abanades JC. Determination of the critical product layer thickness in the reaction of CaO with CO2. Ind Eng Chem Res. 2005;44:5608-5615.
1979; 17
2004; 100
1980; 26
2003; 81
2009; 64
1962; 17
1981; 27
1972
2005; 44
2009; 55
1987; 42
2013; 38
1952; 48
2006; 45
1986; 45
2013; 95
1993; 53
2013; 52
2008; 47
1987
1999; 77
2008; 137
1960
1992; 47
1983; 29
References_xml – reference: Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A twin fluid-bed reactor for removal of CO2 from combustion processes. Chem Eng Res Des. 1999;77:62-68.
– reference: Roes AWM, van Swaaij WPM. Hydrodynamic behaviour of a gas-solid counter-current packed column at trickle flow. Chem Eng J. 1979;17:81-89.
– reference: Symonds RT, Lua DY, Macchi A, Hughes RW, Anthony EJ. CO2 capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: modelling and bench-scale testing. Chem Eng Sci. 2009;64:3536-3543.
– reference: Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G. Static mixers in the process industries-a review. Trans IchemE. 2003;81:787-826.
– reference: Grasa GS, Abanades JC, Alonso M, González B. Reactivity of highly cycled particles of CaO in a carbonation/calcination loop. Chem Eng J. 2008;137:561-567.
– reference: Dennis JS, Hayhurst AN. The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds. Chem Eng Sci. 1987;42:2361-2372.
– reference: Obradović A, Likozar B, Levec J. Catalytic surface development of novel nickel plate catalyst with combined thermally annealed platinum and alumina coatings for steam methane reforming, Int J Hydrogen Energy. 2013;38:1419-1429.
– reference: Harrison DP. Sorption-enhanced hydrogen production: a review. Ind Eng Chem Res. 2008;47:6486-6501.
– reference: Verver AB, van Swaaij WPM. The hydrodynamic behaviour of gas-solid trickle flow over a regularly stacked packing. Powder Technol. 1986;45:119-132.
– reference: Lee DK. An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chem Eng J. 2004;100:71-77.
– reference: Bhatia SK, Perlmutter DD. Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE J. 1983;29:79-86.
– reference: Ranz WE, Marshall WR. Evaporation from drops. Chem Eng Prog. 1952;48:141-146;173-180.
– reference: Verver AB, van Swaaij WPM. The gas-solid trickle-flow reactor for the catalytic oxidation of hydrogen sulphide: a trickle-phase model. Chem Eng Sci. 1987;42:435-445.
– reference: Bhatia SK, Perlmutter DD. A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J. 1980;26:379-386.
– reference: Finlayson B. The Method of Weighted Residuals and Variational Principles. London: Academic Press, 1972.
– reference: Alvarez D, Abanades JC. Determination of the critical product layer thickness in the reaction of CaO with CO2. Ind Eng Chem Res. 2005;44:5608-5615.
– reference: Westerterp KR, Kuczynski M. Gas-solid trickle flow hydrodynamics in a packed column. Chem Eng Sci. 1987;42:1539-1551.
– reference: Kiel JHA, Prins W, van Swaaij WPM. Modelling of non-catalytic reactions in a gas-solid trickle flow reactor: dry, regenerative flue gas desulphurisation using a silica-supported copper oxide sorbent. Chem Eng Sci. 1992;47:4271-4286.
– reference: Grasa GS, Murillo R, Alonso M, Abanades JC. Application of the random pore model to the carbonation cyclic reaction. AIChE J. 2009;55(5):1246-1255.
– reference: Heesink ABM, Prins W, van Swaaij WPM. A grain size distribution model for non-catalytic gas-solid reactions. Chem Eng J. 1993;53:25-37.
– reference: Nikačević NM, Duduković AP. Solids residence time distribution in gas-flowing solids-fixed bed contactors. Ind Eng Chem Res. 2005;44:6509-6517.
– reference: Obradović A, Likozar B, Levec J. Steam methane reforming over Ni-based pellet-type and Pt/Ni/Al2O3 plate-type catalyst: intrinsic kinetics study. Ind Eng Chem Res. 2013;52:13597-13606.
– reference: Reid RC, Prausnitz JM, Poling BE. The Properties of Gases and Liquids, 4th ed. McGraw-Hill, Inc., New York, 1987.
– reference: Zhiming Z, Xu P, Xie M, Cheng Z, Yuan W. Modeling of the carbonation kinetics of a synthetic CaO-based sorbent. Chem Eng Sci. 2013;95:283-290.
– reference: Grasa GS, Abanades JC. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Ind Eng Chem Res. 2006;45:8846-8851.
– reference: Johnsen K, Grace JR, Elnashaie SSEH, Kolbeinsen L, Eriksen D. Modeling of sorption-enhanced steam reforming in a dual fluidized bubbling bed reactor. Ind Eng Chem Res. 2006;45:4133-4144.
– reference: Wakao N, Smith JM. Diffusion in catalyst pellets. Chem Eng Sci. 1962;17:825-834.
– reference: Bird RB, Stewart WE, Lightfoot, EN. Transport Phenomena. Wiley International Edition, Wiley, New York, 1960.
– reference: Bhatia SK, Perlmutter DD. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J. 1981;27:247-254.
– volume: 100
  start-page: 71
  year: 2004
  end-page: 77
  article-title: An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide
  publication-title: Chem Eng J.
– volume: 44
  start-page: 6509
  year: 2005
  end-page: 6517
  article-title: Solids residence time distribution in gas‐flowing solids‐fixed bed contactors
  publication-title: Ind Eng Chem Res.
– volume: 53
  start-page: 25–37
  year: 1993
  article-title: A grain size distribution model for non‐catalytic gas–solid reactions
  publication-title: Chem Eng J.
– year: 1960
– year: 1987
– volume: 45
  start-page: 8846
  year: 2006
  end-page: 8851
  article-title: CO capture capacity of CaO in long series of carbonation/calcination cycles
  publication-title: Ind Eng Chem Res.
– volume: 17
  start-page: 825
  year: 1962
  end-page: 834
  article-title: Diffusion in catalyst pellets
  publication-title: Chem Eng Sci.
– volume: 47
  start-page: 4271
  year: 1992
  end-page: 4286
  article-title: Modelling of non‐catalytic reactions in a gas–solid trickle flow reactor: dry, regenerative flue gas desulphurisation using a silica‐supported copper oxide sorbent
  publication-title: Chem Eng Sci.
– volume: 42
  start-page: 435
  year: 1987
  end-page: 445
  article-title: The gas–solid trickle‐flow reactor for the catalytic oxidation of hydrogen sulphide: a trickle‐phase model
  publication-title: Chem Eng Sci.
– volume: 81
  start-page: 787
  year: 2003
  end-page: 826
  article-title: Static mixers in the process industries—a review
  publication-title: Trans IchemE.
– volume: 137
  start-page: 561
  year: 2008
  end-page: 567
  article-title: Reactivity of highly cycled particles of CaO in a carbonation/calcination loop
  publication-title: Chem Eng J.
– volume: 42
  start-page: 1539
  year: 1987
  end-page: 1551
  article-title: Gas–solid trickle flow hydrodynamics in a packed column
  publication-title: Chem Eng Sci.
– volume: 48
  start-page: 141
  year: 1952
  end-page: 146;173–180
  article-title: Evaporation from drops
  publication-title: Chem Eng Prog.
– volume: 44
  start-page: 5608
  year: 2005
  end-page: 5615
  article-title: Determination of the critical product layer thickness in the reaction of CaO with CO
  publication-title: Ind Eng Chem Res.
– volume: 27
  start-page: 247
  year: 1981
  end-page: 254
  article-title: A random pore model for fluid–solid reactions: II. Diffusion and transport effects
  publication-title: AIChE J.
– volume: 64
  start-page: 3536
  year: 2009
  end-page: 3543
  article-title: CO capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: modelling and bench‐scale testing
  publication-title: Chem Eng Sci.
– volume: 55
  start-page: 1246
  issue: 5
  year: 2009
  end-page: 1255
  article-title: Application of the random pore model to the carbonation cyclic reaction
  publication-title: AIChE J.
– volume: 42
  start-page: 2361
  year: 1987
  end-page: 2372
  article-title: The effect of CO on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds
  publication-title: Chem Eng Sci.
– volume: 26
  start-page: 379
  year: 1980
  end-page: 386
  article-title: A random pore model for fluid–solid reactions: I. Isothermal, kinetic control
  publication-title: AIChE J.
– volume: 95
  start-page: 283
  year: 2013
  end-page: 290
  article-title: Modeling of the carbonation kinetics of a synthetic CaO‐based sorbent
  publication-title: Chem Eng Sci.
– year: 1972
– volume: 52
  start-page: 13597
  year: 2013
  end-page: 13606
  article-title: Steam methane reforming over Ni‐based pellet‐type and Pt/Ni/Al O plate‐type catalyst: intrinsic kinetics study
  publication-title: Ind Eng Chem Res.
– volume: 17
  start-page: 81
  year: 1979
  end-page: 89
  article-title: Hydrodynamic behaviour of a gas–solid counter‐current packed column at trickle flow
  publication-title: Chem Eng J.
– volume: 38
  start-page: 1419
  year: 2013
  end-page: 1429
  article-title: Catalytic surface development of novel nickel plate catalyst with combined thermally annealed platinum and alumina coatings for steam methane reforming
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 4133
  year: 2006
  end-page: 4144
  article-title: Modeling of sorption‐enhanced steam reforming in a dual fluidized bubbling bed reactor
  publication-title: Ind Eng Chem Res.
– volume: 47
  start-page: 6486
  year: 2008
  end-page: 6501
  article-title: Sorption‐enhanced hydrogen production: a review
  publication-title: Ind Eng Chem Res.
– volume: 29
  start-page: 79
  year: 1983
  end-page: 86
  article-title: Effect of the product layer on the kinetics of the CO –lime reaction
  publication-title: AIChE J.
– volume: 45
  start-page: 119
  year: 1986
  end-page: 132
  article-title: The hydrodynamic behaviour of gas–solid trickle flow over a regularly stacked packing
  publication-title: Powder Technol.
– volume: 77
  start-page: 62
  year: 1999
  end-page: 68
  article-title: A twin fluid‐bed reactor for removal of CO from combustion processes
  publication-title: Chem Eng Res Des.
SSID ssj0012782
Score 2.1419628
Snippet The sorption reaction CaO–CO2 was examined in a countercurrent gas–solid trickle flow reactor with regularly stacked packing at T = 500–600°C, pCO2 = 40–50...
The sorption reaction CaO-CO2 was examined in a countercurrent gas-solid trickle flow reactor with regularly stacked packing at T=500-600°C, pCO2=40-50 kPa,...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1601
SubjectTerms CaO-CO2 reaction
Carbon dioxide
countercurrent gas-solid trickle flow
Hydrodynamics
Plug flow
plug flow model
Reactors
Sorption
structured packing
Title Countercurrent gas-solid trickle flow reactor with structured packing: Hydrodynamics and CaO-CO2 reaction
URI https://api.istex.fr/ark:/67375/WNG-RS8GRG7W-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.14731
https://www.proquest.com/docview/1880063756
Volume 61
WOSCitedRecordID wos000354696200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFH9C7Q7jsP-IMjb5ME1cIhI7iW04oWwtk6Z2Kkxws1zbqSognRo2thvfgW_IJ9lz3GbdDYlbDvZT9P7l5xe_3wP4QMtUCpm4iOW5idLMWIw5lkSOasPSuEQ_CsMm-HAozs_ltw04XPXCBH6ItuDmI6PJ1z7A9aTe_0caqmcGw5z7HuouRb_NOtD9NO5__9r-RKBcBLJwPDEjUkhWxEIx3W83Iyb16vz9H8Bch6nNd6b__FFv-AKeLeElOQr-8BI2XPUKNtdIB1_DlW9DR22awMxEprq-v71DF5xZ4un6Ly4dKS_nNwThpK_oE1-qJYFn9ufCWYKnbF9fPyDHfyym3zDSvia6sqTQI5RVjGjYjDZ_A6f9z6fFcbQcuhBNqRRJxK2UNqeOUc0motSSGT1hgmvGWIyJPXdlbHUmrHHMGWq0S7RAUCl90xCu3oJONa_cNpAs176PV_PcijQ1XMY25cIYnsclR_k9-NioXv0IvBpKLy78NTOeqbPhQI1PxGA84Geq6MHuyjZqGWG18jxyCK94lvdgr7FCKycwMVOF-leN_tXRl6J52Hn40rfwFLFRFu427kIHtezewRPz63pWL94vXe0v4fTZQA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hqFQ4lFJAhEfxAaFeVuzau2sb9YK2JEGEUIUguFnG9qIICCgpj976H_oP-SUdr5MUbkjc9mCPVvPaz7OebwC2aJlKIRMXsTw3UZoZizHHkshRbVgal-hHYdgEb7fF-bn8OQXfx70wgR9iUnDzkVHlax_gviC98581VPcMxjn3TdQzKboR-vfMj079tDX5i0C5CGzheGRGqJCMmYViujPZjKDU6_PpFcJ8iVOrD019_n2v-Bk-jQAm2QsesQBTrv8F5l7QDi7CjW9ER32awM1ELvXw-c9fdMKeJZ6w_-rakfL69pEgoPQ1feKLtSQwzd4PnCV4zvYV9l3S_G0xAYeh9kOi-5YU-hhlFcc0bEarL0G3vt8tmtFo7EJ0SaVIIm6ltDl1jGp2IUotmdEXTHDNGIsxteeujK3OhDWOOUONdokWCCulbxvC1csw3b_tuxUgWa59J6_muRVpariMbcqFMTyPS47ya7Bd6V7dBWYNpQdX_qIZz9RZu6E6J6LRafAzVdRgfWwcNYqxofJMcgiweJbX4FtlhomcwMVMFepfVfpXewdF9bD69qWb8LHZPWqp1kH7cA1mESll4abjOkyjxt0GfDAPv3rDwdeR3_0D427dMA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxEB6hUCE4QFuoGqDFh6rismLX3l3bqBe0NAGBAgoguFnG9qKIkKCE31vfgTfkSRivkxRuSNz2YI9W87efZz3fAPyiZSqFTFzE8txEaWYsxhxLIke1YWlcoh-FYRO81RJnZ_JwCv6Me2ECP8Sk4OYjo8rXPsDdtS03_rOG6o7BOOe-iXo69UNkajC93W6c7E_-IlAuAls4HpkRKiRjZqGYbkw2Iyj1-nx4gzBf49TqQ9NY-Ngrfob5EcAkW8EjvsCU632FuVe0g4tw5RvRUZ8mcDORCz18_veETtixxBP2X3YdKbv9e4KA0tf0iS_WksA0eztwluA521fYN8nOo8UEHIbaD4nuWVLoA5RVHNCwGa2-BMeNv8fFTjQauxBdUCmSiFspbU4do5qdi1JLZvQ5E1wzxmJM7bkrY6szYY1jzlCjXaIFwkrp24Zw9Teo9fo99x1Ilmvfyat5bkWaGi5jm3JhDM_jkqP8OvyudK-uA7OG0oNLf9GMZ-q01VTtI9FsN_mpKuqwOjaOGsXYUHkmOQRYPMvrsF6ZYSIncDFThfpXlf7V1m5RPSy_f-kazBxuN9T-bmtvBWYRKGXhouMq1FDh7gd8Mnc3neHg58jtXgCildyr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Countercurrent+gas-solid+trickle+flow+reactor+with+structured+packing%3A+Hydrodynamics+and+CaO-CO2+reaction&rft.jtitle=AIChE+journal&rft.au=Obradovic%2C+Ana&rft.au=Levec%2C+Janez&rft.date=2015-05-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=61&rft.issue=5&rft.spage=1601&rft_id=info:doi/10.1002%2Faic.14731&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4321093459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon