Sobolev Inequalities and the ∂¯-Neumann Operator
We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the ∂ ¯ -Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in L 2 -spaces. Finally we remark that the ∂ ¯...
Gespeichert in:
| Veröffentlicht in: | The Journal of geometric analysis Jg. 26; H. 1; S. 287 - 293 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.01.2016
|
| Schlagworte: | |
| ISSN: | 1050-6926, 1559-002X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the
∂
¯
-Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in
L
2
-spaces. Finally we remark that the
∂
¯
-Neumann operator can be continuously extended provided a subelliptic estimate holds. |
|---|---|
| ISSN: | 1050-6926 1559-002X |
| DOI: | 10.1007/s12220-014-9549-3 |