Sobolev Inequalities and the ∂¯-Neumann Operator

We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the ∂ ¯ -Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in L 2 -spaces. Finally we remark that the ∂ ¯...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis Jg. 26; H. 1; S. 287 - 293
1. Verfasser: Haslinger, Friedrich
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.01.2016
Schlagworte:
ISSN:1050-6926, 1559-002X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the ∂ ¯ -Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in L 2 -spaces. Finally we remark that the ∂ ¯ -Neumann operator can be continuously extended provided a subelliptic estimate holds.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-014-9549-3