Sobolev Inequalities and the ∂¯-Neumann Operator

We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the ∂ ¯ -Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in L 2 -spaces. Finally we remark that the ∂ ¯...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of geometric analysis Ročník 26; číslo 1; s. 287 - 293
Hlavní autor: Haslinger, Friedrich
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2016
Témata:
ISSN:1050-6926, 1559-002X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study a complex-valued version of the Sobolev inequalities and its relationship to compactness of the ∂ ¯ -Neumann operator. For this purpose we use an abstract characterization of compactness derived from a general description of precompact subsets in L 2 -spaces. Finally we remark that the ∂ ¯ -Neumann operator can be continuously extended provided a subelliptic estimate holds.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-014-9549-3