Research on Sustainable Form Design of NEV Vehicle Based on Particle Swarm Algorithm Optimized Support Vector Regression
With the growing emphasis on eco-friendly and sustainable development concepts, new energy vehicles (NEVs) have emerged as a popular alternative to traditional fuel vehicles (FVs). Due to the absence of an internal combustion engine, electric vehicles (EVs) do not require a front air intake grille,...
Gespeichert in:
| Veröffentlicht in: | Sustainability Jg. 16; H. 17 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
MDPI AG
01.09.2024
|
| Schlagworte: | |
| ISSN: | 2071-1050, 2071-1050 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the growing emphasis on eco-friendly and sustainable development concepts, new energy vehicles (NEVs) have emerged as a popular alternative to traditional fuel vehicles (FVs). Due to the absence of an internal combustion engine, electric vehicles (EVs) do not require a front air intake grille, allowing for a more minimalist and flexible design. Consequently, aligning EV styling with users’ visual cognition and emotional perception is a critical objective for automakers and designers. In this study, we establish the mapping relationship between users’ emotional cognition and NEV styling design based on experimental data. We introduce Particle Swarm Optimization Support Vector Regression (PSO-SVR) into the perceptual engineering (KE) research process to predict user emotions using Support Vector Regression (SVR). To optimize the three hyperparameters (penalty coefficient C, RBF kernel function parameter γ, and insensitivity loss coefficient ε) of the SVR model, we utilize the Particle Swarm Optimization (PSO) algorithm. The results indicate that the proposed PSO-SVR model outperforms traditional SVR and BPNN models in predicting NEV user emotions. This model effectively captures the nonlinear relationship between battery electric vehicle (BEV) morphological features and users’ emotional cognition, providing a novel method for enhancing NEV design. The results of this research are expected to drive design innovation and technological advancement in the new energy vehicle industry, contributing to the achievement of the ambitious goal of global eco-friendliness and sustainable development. |
|---|---|
| AbstractList | With the growing emphasis on eco-friendly and sustainable development concepts, new energy vehicles (NEVs) have emerged as a popular alternative to traditional fuel vehicles (FVs). Due to the absence of an internal combustion engine, electric vehicles (EVs) do not require a front air intake grille, allowing for a more minimalist and flexible design. Consequently, aligning EV styling with users’ visual cognition and emotional perception is a critical objective for automakers and designers. In this study, we establish the mapping relationship between users’ emotional cognition and NEV styling design based on experimental data. We introduce Particle Swarm Optimization Support Vector Regression (PSO-SVR) into the perceptual engineering (KE) research process to predict user emotions using Support Vector Regression (SVR). To optimize the three hyperparameters (penalty coefficient C, RBF kernel function parameter γ, and insensitivity loss coefficient ε) of the SVR model, we utilize the Particle Swarm Optimization (PSO) algorithm. The results indicate that the proposed PSO-SVR model outperforms traditional SVR and BPNN models in predicting NEV user emotions. This model effectively captures the nonlinear relationship between battery electric vehicle (BEV) morphological features and users’ emotional cognition, providing a novel method for enhancing NEV design. The results of this research are expected to drive design innovation and technological advancement in the new energy vehicle industry, contributing to the achievement of the ambitious goal of global eco-friendliness and sustainable development. |
| Audience | Academic |
| Author | Zongming Liu Xinan Liang Yang Zhao Shiwen Huang Xuhui Chen |
| Author_xml | – sequence: 1 fullname: Zongming Liu – sequence: 2 fullname: Xuhui Chen – sequence: 3 fullname: Xinan Liang – sequence: 4 fullname: Shiwen Huang – sequence: 5 fullname: Yang Zhao |
| BookMark | eNpVkE1PAjEQhhujiYhc_AW9egD7Qdn2iAhKQsSwypXMdrtLze6WbLuR-OutHwecOcybmeedSeYKnTeuMQjdUDLiXJE739EJTRJJ2RnqMZLQISWCnJ_oSzTw_p3E4JwqOumh48Z4A63eY9fgtPMBbANZZfDCtTV-MN6WDXYFfp5v8dbsrY6je_Am_-ZfoA0_nfQDIj2tStfasK_x-hBsbT8jlXaHg2tD9OrgWrwxZWu8t665RhcFVN4M_mofvS3mr7On4Wr9uJxNV8OSChmGwIQRirMxU7kEpsRYa6OAcspzkWcJ45IVEBWQnGaZLlj8gREikVLJBAreR6PfvSVUZmebwoUWdMzc1FbHBxY29qeSSEniHRUNt_8MkQnmGErovN8t080p-wVynXJ_ |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG |
| DBID | ISR |
| DOI | 10.3390/su16177812 |
| DatabaseName | Gale In Context: Science |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 2071-1050 |
| ExternalDocumentID | A808809329 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH ACHQT ADBBV ADMLS AENEX AFFHD AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 |
| ID | FETCH-LOGICAL-g158t-a25e5932429d8a2954cce9a1313d5db72382fa5dba0d1bbcf2161e55788987af3 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001311479900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2071-1050 |
| IngestDate | Tue Nov 04 18:23:35 EST 2025 Thu Nov 13 16:10:38 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-g158t-a25e5932429d8a2954cce9a1313d5db72382fa5dba0d1bbcf2161e55788987af3 |
| ParticipantIDs | gale_infotracacademiconefile_A808809329 gale_incontextgauss_ISR_A808809329 |
| PublicationCentury | 2000 |
| PublicationDate | 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 20240901 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Sustainability |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| SSID | ssj0000331916 |
| Score | 2.3745449 |
| Snippet | With the growing emphasis on eco-friendly and sustainable development concepts, new energy vehicles (NEVs) have emerged as a popular alternative to traditional... |
| SourceID | gale |
| SourceType | Aggregation Database |
| SubjectTerms | Comparative analysis Design and construction Electric vehicles Machine learning Swarm intelligence |
| Title | Research on Sustainable Form Design of NEV Vehicle Based on Particle Swarm Algorithm Optimized Support Vector Regression |
| Volume | 16 |
| WOSCitedRecordID | wos001311479900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF_OKuhL0WqxWmURwYcQzWez-3jWqy1oPbxaDl-OTbLJBXqbcknawwfxT3cm2XwU-lAffAlhmOyG_H7Mzk5mZgl5a7FY-jFscqQXRCbuEMzQ8kPTicB7ZSKybVF31_8SnJ6y-ZxPR6M_bS3M1UWgFNts-OV_hRpkADaWzv4D3N2gIIB7AB2uADtc7wR8m0uHvwFmg_KoI_BOwbxgwkYdJpicG-dyiU8bH2Epi1F_qsczZtcCtMcXab7OyuXK-AaWZZX9Qu-0ukSXHZ7FcD_AkzaZtGro5nbzYuZtF7T_mat01VRVVa1sXi2rzDhc9hVpc8zNARWh19S6f2R2LZVxXLUyHaZwvC4PS6cqfZqeGOPPvXVzwLeBNaDpOvte3iJrzfPBkIbBbWbfdblVY4mbtYDpvOwbvbVPZt9vCpuevwyMrAUuLL9H7juBz9G0f_3dR-ksF0xUfX5u925Nj1uc8kM_oV7QB67J2WOyrfcUdNxg94SMpNohD9uS82KH7E76ckZQ1Pa8eEo2LVloruiALBTJQhuy0DyhQBaqyUJrsqB-SxZak4V2ZKEdWagmC23IQnuyPCM_jiZnh8emPovDTG2flaZwfOlz9L55zAT-HI4iyYXt2m7sxyEeXeckAu6EFdthGCUOfBrpw3rAOAtE4u6SLZUr-ZxQ5kUMfCIpgoh7oSsYD_iBEzqhFwjhWmyPvMFvucDuJArTn1JRFcUCEFz0eO2Rd1opycu1iISuJoEpsKHZQPPFXYZ7SR71pN0nW-W6kq_Ig-iqzIr165oTfwHzG4f6 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Sustainable+Form+Design+of+NEV+Vehicle+Based+on+Particle+Swarm+Algorithm+Optimized+Support+Vector+Regression&rft.jtitle=Sustainability&rft.au=Zongming+Liu&rft.au=Xuhui+Chen&rft.au=Xinan+Liang&rft.au=Shiwen+Huang&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=17&rft_id=info:doi/10.3390%2Fsu16177812&rft.externalDBID=ISR&rft.externalDocID=A808809329 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |