Research on Sustainable Form Design of NEV Vehicle Based on Particle Swarm Algorithm Optimized Support Vector Regression

With the growing emphasis on eco-friendly and sustainable development concepts, new energy vehicles (NEVs) have emerged as a popular alternative to traditional fuel vehicles (FVs). Due to the absence of an internal combustion engine, electric vehicles (EVs) do not require a front air intake grille,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability Jg. 16; H. 17
Hauptverfasser: Zongming Liu, Xuhui Chen, Xinan Liang, Shiwen Huang, Yang Zhao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: MDPI AG 01.09.2024
Schlagworte:
ISSN:2071-1050, 2071-1050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the growing emphasis on eco-friendly and sustainable development concepts, new energy vehicles (NEVs) have emerged as a popular alternative to traditional fuel vehicles (FVs). Due to the absence of an internal combustion engine, electric vehicles (EVs) do not require a front air intake grille, allowing for a more minimalist and flexible design. Consequently, aligning EV styling with users’ visual cognition and emotional perception is a critical objective for automakers and designers. In this study, we establish the mapping relationship between users’ emotional cognition and NEV styling design based on experimental data. We introduce Particle Swarm Optimization Support Vector Regression (PSO-SVR) into the perceptual engineering (KE) research process to predict user emotions using Support Vector Regression (SVR). To optimize the three hyperparameters (penalty coefficient C, RBF kernel function parameter γ, and insensitivity loss coefficient ε) of the SVR model, we utilize the Particle Swarm Optimization (PSO) algorithm. The results indicate that the proposed PSO-SVR model outperforms traditional SVR and BPNN models in predicting NEV user emotions. This model effectively captures the nonlinear relationship between battery electric vehicle (BEV) morphological features and users’ emotional cognition, providing a novel method for enhancing NEV design. The results of this research are expected to drive design innovation and technological advancement in the new energy vehicle industry, contributing to the achievement of the ambitious goal of global eco-friendliness and sustainable development.
AbstractList With the growing emphasis on eco-friendly and sustainable development concepts, new energy vehicles (NEVs) have emerged as a popular alternative to traditional fuel vehicles (FVs). Due to the absence of an internal combustion engine, electric vehicles (EVs) do not require a front air intake grille, allowing for a more minimalist and flexible design. Consequently, aligning EV styling with users’ visual cognition and emotional perception is a critical objective for automakers and designers. In this study, we establish the mapping relationship between users’ emotional cognition and NEV styling design based on experimental data. We introduce Particle Swarm Optimization Support Vector Regression (PSO-SVR) into the perceptual engineering (KE) research process to predict user emotions using Support Vector Regression (SVR). To optimize the three hyperparameters (penalty coefficient C, RBF kernel function parameter γ, and insensitivity loss coefficient ε) of the SVR model, we utilize the Particle Swarm Optimization (PSO) algorithm. The results indicate that the proposed PSO-SVR model outperforms traditional SVR and BPNN models in predicting NEV user emotions. This model effectively captures the nonlinear relationship between battery electric vehicle (BEV) morphological features and users’ emotional cognition, providing a novel method for enhancing NEV design. The results of this research are expected to drive design innovation and technological advancement in the new energy vehicle industry, contributing to the achievement of the ambitious goal of global eco-friendliness and sustainable development.
Audience Academic
Author Zongming Liu
Xinan Liang
Yang Zhao
Shiwen Huang
Xuhui Chen
Author_xml – sequence: 1
  fullname: Zongming Liu
– sequence: 2
  fullname: Xuhui Chen
– sequence: 3
  fullname: Xinan Liang
– sequence: 4
  fullname: Shiwen Huang
– sequence: 5
  fullname: Yang Zhao
BookMark eNpVkE1PAjEQhhujiYhc_AW9egD7Qdn2iAhKQsSwypXMdrtLze6WbLuR-OutHwecOcybmeedSeYKnTeuMQjdUDLiXJE739EJTRJJ2RnqMZLQISWCnJ_oSzTw_p3E4JwqOumh48Z4A63eY9fgtPMBbANZZfDCtTV-MN6WDXYFfp5v8dbsrY6je_Am_-ZfoA0_nfQDIj2tStfasK_x-hBsbT8jlXaHg2tD9OrgWrwxZWu8t665RhcFVN4M_mofvS3mr7On4Wr9uJxNV8OSChmGwIQRirMxU7kEpsRYa6OAcspzkWcJ45IVEBWQnGaZLlj8gREikVLJBAreR6PfvSVUZmebwoUWdMzc1FbHBxY29qeSSEniHRUNt_8MkQnmGErovN8t080p-wVynXJ_
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
DBID ISR
DOI 10.3390/su16177812
DatabaseName Gale In Context: Science
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID A808809329
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
ACHQT
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
ID FETCH-LOGICAL-g158t-a25e5932429d8a2954cce9a1313d5db72382fa5dba0d1bbcf2161e55788987af3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001311479900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2071-1050
IngestDate Tue Nov 04 18:23:35 EST 2025
Thu Nov 13 16:10:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g158t-a25e5932429d8a2954cce9a1313d5db72382fa5dba0d1bbcf2161e55788987af3
ParticipantIDs gale_infotracacademiconefile_A808809329
gale_incontextgauss_ISR_A808809329
PublicationCentury 2000
PublicationDate 20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 20240901
  day: 01
PublicationDecade 2020
PublicationTitle Sustainability
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
SSID ssj0000331916
Score 2.3745449
Snippet With the growing emphasis on eco-friendly and sustainable development concepts, new energy vehicles (NEVs) have emerged as a popular alternative to traditional...
SourceID gale
SourceType Aggregation Database
SubjectTerms Comparative analysis
Design and construction
Electric vehicles
Machine learning
Swarm intelligence
Title Research on Sustainable Form Design of NEV Vehicle Based on Particle Swarm Algorithm Optimized Support Vector Regression
Volume 16
WOSCitedRecordID wos001311479900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF_OKuhL0WqxWmURwYcQzWez-3jWqy1oPbxaDl-OTbLJBXqbcknawwfxT3cm2XwU-lAffAlhmOyG_H7Mzk5mZgl5a7FY-jFscqQXRCbuEMzQ8kPTicB7ZSKybVF31_8SnJ6y-ZxPR6M_bS3M1UWgFNts-OV_hRpkADaWzv4D3N2gIIB7AB2uADtc7wR8m0uHvwFmg_KoI_BOwbxgwkYdJpicG-dyiU8bH2Epi1F_qsczZtcCtMcXab7OyuXK-AaWZZX9Qu-0ukSXHZ7FcD_AkzaZtGro5nbzYuZtF7T_mat01VRVVa1sXi2rzDhc9hVpc8zNARWh19S6f2R2LZVxXLUyHaZwvC4PS6cqfZqeGOPPvXVzwLeBNaDpOvte3iJrzfPBkIbBbWbfdblVY4mbtYDpvOwbvbVPZt9vCpuevwyMrAUuLL9H7juBz9G0f_3dR-ksF0xUfX5u925Nj1uc8kM_oV7QB67J2WOyrfcUdNxg94SMpNohD9uS82KH7E76ckZQ1Pa8eEo2LVloruiALBTJQhuy0DyhQBaqyUJrsqB-SxZak4V2ZKEdWagmC23IQnuyPCM_jiZnh8emPovDTG2flaZwfOlz9L55zAT-HI4iyYXt2m7sxyEeXeckAu6EFdthGCUOfBrpw3rAOAtE4u6SLZUr-ZxQ5kUMfCIpgoh7oSsYD_iBEzqhFwjhWmyPvMFvucDuJArTn1JRFcUCEFz0eO2Rd1opycu1iISuJoEpsKHZQPPFXYZ7SR71pN0nW-W6kq_Ig-iqzIr165oTfwHzG4f6
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Sustainable+Form+Design+of+NEV+Vehicle+Based+on+Particle+Swarm+Algorithm+Optimized+Support+Vector+Regression&rft.jtitle=Sustainability&rft.au=Zongming+Liu&rft.au=Xuhui+Chen&rft.au=Xinan+Liang&rft.au=Shiwen+Huang&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=17&rft_id=info:doi/10.3390%2Fsu16177812&rft.externalDBID=ISR&rft.externalDocID=A808809329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon