ALGEBRAIC PROPERTIES OF KERNEL SYMMETRIC NEUTROSOPHIC FUZZY MATRICES
We define secondary k-Kernel symmetric (KS) and provide numerical examples for neutrosophic fuzzy matrices (NFM). We discuss the relation between s-k- KS, s-KS, k- KS and KS NFM. We identify the necessary and sufficient conditions for a NFM to be a s-k- KS NFM. We demonstrate that k-symmetry implies...
Uloženo v:
| Vydáno v: | TWMS journal of applied and engineering mathematics Ročník 15; číslo 8; s. 2057 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Turkic World Mathematical Society
01.08.2025
|
| Témata: | |
| ISSN: | 2146-1147 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We define secondary k-Kernel symmetric (KS) and provide numerical examples for neutrosophic fuzzy matrices (NFM). We discuss the relation between s-k- KS, s-KS, k- KS and KS NFM. We identify the necessary and sufficient conditions for a NFM to be a s-k- KS NFM. We demonstrate that k-symmetry implies k-KS and the converse is true. Also, we illustrate a graphical representation of KS adjacency and incidence NFM. Every adjacency NFM is symmetric, kernel symmetric but incidence matrix satisfies only kernel symmetric conditions. We establish the existence of multiple generalized inverses of NFM in [F.sub.n] and establish the additional equivalent conditions for certain g-inverses of a s-k-KS NFM to be s-k-KS. Also, we characterize the generalized inverses belonging to the sets [psi] (1, 2), [psi] (1, 2, 3) and [psi] (1, 2, 4) of s-k- KS NFM [psi]. Keywords: Neutrosophic fuzzy matrices, s- Kernel symmetric, Adjacency Neutrosophic fuzzy matrices, Incidence Neutrosophic fuzzy matrices, Moore Penrose inverse. AMS Subject Classification: 03E72, 15B15, 15B99. |
|---|---|
| ISSN: | 2146-1147 |