ON THE CLASSIFICATION OF PYTHAGOREAN FUZZY SUBGROUPS OF ABELIAN GROUPS
Pythagorean fuzzy set is one of the most used tool for depicting uncertainty. A divisible subgroup is among the most significant categories of subgroups of an abelian group. The number of Pythagorean fuzzy subgroups in any group is infinite without a suitable equivalence constraint on the Pythagorea...
Uloženo v:
| Vydáno v: | TWMS journal of applied and engineering mathematics Ročník 15; číslo 7; s. 1715 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Turkic World Mathematical Society
01.07.2025
|
| Témata: | |
| ISSN: | 2146-1147 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Pythagorean fuzzy set is one of the most used tool for depicting uncertainty. A divisible subgroup is among the most significant categories of subgroups of an abelian group. The number of Pythagorean fuzzy subgroups in any group is infinite without a suitable equivalence constraint on the Pythagorean fuzzy sets. To get a meaningful categorization, a sufficient equivalent condition on the collection of all Pythagorean fuzzy subgroups needs to be defined. In this paper, the concept of Pythagorean fuzzy divisible subgroups of a group is introduced. An equivalence relation on Pythagorean fuzzy sets is defined. Several properties of this equivalence relation on Pythagorean fuzzy subgroups are explained. Pythagorean fuzzy subgroups related to their maximal chains are introduced. All possible Pythagorean fuzzy subgroups of finite abelian groups are investigated. Keywords: Pythagorean fuzzy set, Pythagorean fuzzy divisible subgroup, equivalence relation on PFS, maximal chains of PFSG, counting of PFSG. AMS Subject Classification: 03E72, 08A72, 20N25 |
|---|---|
| AbstractList | Pythagorean fuzzy set is one of the most used tool for depicting uncertainty. A divisible subgroup is among the most significant categories of subgroups of an abelian group. The number of Pythagorean fuzzy subgroups in any group is infinite without a suitable equivalence constraint on the Pythagorean fuzzy sets. To get a meaningful categorization, a sufficient equivalent condition on the collection of all Pythagorean fuzzy subgroups needs to be defined. In this paper, the concept of Pythagorean fuzzy divisible subgroups of a group is introduced. An equivalence relation on Pythagorean fuzzy sets is defined. Several properties of this equivalence relation on Pythagorean fuzzy subgroups are explained. Pythagorean fuzzy subgroups related to their maximal chains are introduced. All possible Pythagorean fuzzy subgroups of finite abelian groups are investigated. Pythagorean fuzzy set is one of the most used tool for depicting uncertainty. A divisible subgroup is among the most significant categories of subgroups of an abelian group. The number of Pythagorean fuzzy subgroups in any group is infinite without a suitable equivalence constraint on the Pythagorean fuzzy sets. To get a meaningful categorization, a sufficient equivalent condition on the collection of all Pythagorean fuzzy subgroups needs to be defined. In this paper, the concept of Pythagorean fuzzy divisible subgroups of a group is introduced. An equivalence relation on Pythagorean fuzzy sets is defined. Several properties of this equivalence relation on Pythagorean fuzzy subgroups are explained. Pythagorean fuzzy subgroups related to their maximal chains are introduced. All possible Pythagorean fuzzy subgroups of finite abelian groups are investigated. Keywords: Pythagorean fuzzy set, Pythagorean fuzzy divisible subgroup, equivalence relation on PFS, maximal chains of PFSG, counting of PFSG. AMS Subject Classification: 03E72, 08A72, 20N25 |
| Audience | Academic |
| Author | Bhunia, S Ghorai, G |
| Author_xml | – sequence: 1 fullname: Bhunia, S – sequence: 2 fullname: Ghorai, G |
| BookMark | eNptkEtrwkAUhWdhodb6HwJdp8w7M8sx5AXBiEkWupF5RVI0QuP_p1PswkXvXVz4zrlncd7AYrpNfgGWGFEeI0STV7Ce5y8YRnCeQLIEebONujKL0lq1bZVXqeqqgJo82h26UhXNPlPbKO-Px0PU9pti3_S79ldWm6yugvQg7-Bl0JfZr__uCvR51qVlXDdFyKzjM2L4Hlts4OCQ0dgzTomRLgCpmeED45oySRiTwljnOMFYGgYhJ5A6KbxwUHqyAh-P3LO--NM4Dbf7t7bXcbYnJaiAmCSUBNfnP66wzl9HGzoZxsCfHn4An2RRUw |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 Turkic World Mathematical Society |
| Copyright_xml | – notice: COPYRIGHT 2025 Turkic World Mathematical Society |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | A848023743 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | .4S 2XV 5VS 8FE 8FG 8G5 ABJCF ABUWG ACIWK ADBBV AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU DWQXO EDSIH GNUQQ GUQSH HCIFZ IAO IEA ITC KQ8 L6V M2O M7S OK1 PADUT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS TUS |
| ID | FETCH-LOGICAL-g152t-c2b0fd1ba2e5643b9d2b09a5b6f56a45935598bcdd63229b5006304d98e8d09e3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001524056700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2146-1147 |
| IngestDate | Tue Nov 11 10:47:07 EST 2025 Tue Nov 04 18:09:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-g152t-c2b0fd1ba2e5643b9d2b09a5b6f56a45935598bcdd63229b5006304d98e8d09e3 |
| ParticipantIDs | gale_infotracmisc_A848023743 gale_infotracacademiconefile_A848023743 |
| PublicationCentury | 2000 |
| PublicationDate | 20250701 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 20250701 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | TWMS journal of applied and engineering mathematics |
| PublicationYear | 2025 |
| Publisher | Turkic World Mathematical Society |
| Publisher_xml | – name: Turkic World Mathematical Society |
| SSID | ssj0000866703 |
| Score | 2.296427 |
| Snippet | Pythagorean fuzzy set is one of the most used tool for depicting uncertainty. A divisible subgroup is among the most significant categories of subgroups of an... |
| SourceID | gale |
| SourceType | Aggregation Database |
| StartPage | 1715 |
| SubjectTerms | Abelian groups Fuzzy algorithms Fuzzy logic Fuzzy sets Fuzzy systems Mathematical research Set theory |
| Title | ON THE CLASSIFICATION OF PYTHAGOREAN FUZZY SUBGROUPS OF ABELIAN GROUPS |
| Volume | 15 |
| WOSCitedRecordID | wos001524056700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database issn: 2146-1147 databaseCode: M7S dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://search.proquest.com omitProxy: false ssIdentifier: ssj0000866703 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central issn: 2146-1147 databaseCode: BENPR dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: false ssIdentifier: ssj0000866703 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database issn: 2146-1147 databaseCode: PIMPY dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://search.proquest.com/publiccontent omitProxy: false ssIdentifier: ssj0000866703 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library issn: 2146-1147 databaseCode: M2O dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/pqrl omitProxy: false ssIdentifier: ssj0000866703 providerName: ProQuest – providerCode: PRVPQU databaseName: Turkey Database (ProQuest) issn: 2146-1147 databaseCode: EDSIH dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/turkey omitProxy: false ssIdentifier: ssj0000866703 providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA86PehB_MT5RQ6CBylsbdImxyl2E7Qb2KHzImmbuiFW2Yf45_uShrS76cFLKUmb0v4er7_3ePk9hM6Z8EguJXWAEmUQoKhugC4XTk5y4glJA84T3WwiiCL29MQHplf5TLcTCIqCfX_zz3-FGsYAbLV19g9w20VhAM4BdDgC7HD8FfD9SJfxXN91wFGGZqOwKu4ZjOKeyq-pur1w-Pw8unwYXumye92_vHN1A3F9VBbiP9RJa_wI0X5NYkIY5qpy7rLSM7x8txKwVe59vCjKclxLOrtjsDpdQ9CtpxxcastTSyOJF9O3SWqqfe7t0kq95MPKl5Q-TLUNdyDkCpYcLq0ZVlDznu3ATC0rYHcYUTJ1wHVW0arXIg20Nri9H4xsLg3CMj_QTbDt88wftsYV4m20ZUg-7pTg7KAVWeyizeodZnso7EcYYMLLMOF-iGswYQ0TtjCpaQMTLkf20TC8ia97julp4bwCU5o7qZu08qydCFdSIIMJz2CAC5r4OfUFoUrunrMkzTIfXC1PqBZFIxlnkmUtLr0D1Cg-CnmIcJsIMPscvDSE6H7KEpa7VOaZcFseEdJrogv1CV6U6c6nIhVmwwXcrTS_XqrP2kQnS1eCh0lr00e_XugYbVT2coIa8-lCnqL19Gs-mU3PDGw_iUo_3A |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+THE+CLASSIFICATION+OF+PYTHAGOREAN+FUZZY+SUBGROUPS+OF+ABELIAN+GROUPS&rft.jtitle=TWMS+journal+of+applied+and+engineering+mathematics&rft.au=Bhunia%2C+S&rft.au=Ghorai%2C+G&rft.date=2025-07-01&rft.pub=Turkic+World+Mathematical+Society&rft.issn=2146-1147&rft.volume=15&rft.issue=7&rft.spage=1715&rft.externalDocID=A848023743 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2146-1147&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2146-1147&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2146-1147&client=summon |