Upward refinement operators for conceptual blending in the description logic

Conceptual blending is a mental process that serves a variety of cognitive purposes, including human creativity. In this line of thinking, human creativity is modeled as a process that takes different mental spaces as input and combines them into a new mental space, called a blend . According to thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics and artificial intelligence Jg. 82; H. 1-3; S. 69 - 99
Hauptverfasser: Confalonieri, Roberto, Eppe, Manfred, Schorlemmer, Marco, Kutz, Oliver, Peñaloza, Rafael, Plaza, Enric
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.03.2018
Springer
Schlagworte:
ISSN:1012-2443, 1573-7470
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Conceptual blending is a mental process that serves a variety of cognitive purposes, including human creativity. In this line of thinking, human creativity is modeled as a process that takes different mental spaces as input and combines them into a new mental space, called a blend . According to this form of combinational creativity , a blend is constructed by taking the commonalities among the input mental spaces into account, to form a so-called generic space , and by projecting the non-common structure of the input spaces in a selective way to the novel blended space. Since input spaces for interesting blends are often initially incompatible, a generalisation step is needed before they can be blended. In this paper, we apply this idea to blend input spaces specified in the description logic 𝓔 𝓛 + + and propose an upward refinement operator for generalising 𝓔 𝓛 + + concepts. We show how the generalisation operator is translated to Answer Set Programming (ASP) in order to implement a search process that finds possible generalisations of input concepts. The generalisations obtained by the ASP process are used in a conceptual blending algorithm that generates and evaluates possible combinations of blends. We exemplify our approach in the domain of computer icons.
AbstractList Conceptual blending is a mental process that serves a variety of cognitive purposes, including human creativity. In this line of thinking, human creativity is modeled as a process that takes different mental spaces as input and combines them into a new mental space, called a blend. According to this form of combinational creativity, a blend is constructed by taking the commonalities among the input mental spaces into account, to form a so-called generic space, and by projecting the non-common structure of the input spaces in a selective way to the novel blended space. Since input spaces for interesting blends are often initially incompatible, a generalisation step is needed before they can be blended. In this paper, we apply this idea to blend input spaces specified in the description logic [EL.sup.++] and propose an upward refinement operator for generalising [EL.sup.++] concepts. We show how the generalisation operator is translated to Answer Set Programming (ASP) in order to implement a search process that finds possible generalisations of input concepts. The generalisations obtained by the ASP process are used in a conceptual blending algorithm that generates and evaluates possible combinations of blends. We exemplify our approach in the domain of computer icons. Keywords Computational creativity * Conceptual blending * Description logic * Answer set programming Mathematics Subject Classification (2010) 07.05.Mh * 89.20.Ff
Conceptual blending is a mental process that serves a variety of cognitive purposes, including human creativity. In this line of thinking, human creativity is modeled as a process that takes different mental spaces as input and combines them into a new mental space, called a blend . According to this form of combinational creativity , a blend is constructed by taking the commonalities among the input mental spaces into account, to form a so-called generic space , and by projecting the non-common structure of the input spaces in a selective way to the novel blended space. Since input spaces for interesting blends are often initially incompatible, a generalisation step is needed before they can be blended. In this paper, we apply this idea to blend input spaces specified in the description logic 𝓔 𝓛 + + and propose an upward refinement operator for generalising 𝓔 𝓛 + + concepts. We show how the generalisation operator is translated to Answer Set Programming (ASP) in order to implement a search process that finds possible generalisations of input concepts. The generalisations obtained by the ASP process are used in a conceptual blending algorithm that generates and evaluates possible combinations of blends. We exemplify our approach in the domain of computer icons.
Audience Academic
Author Confalonieri, Roberto
Kutz, Oliver
Schorlemmer, Marco
Peñaloza, Rafael
Eppe, Manfred
Plaza, Enric
Author_xml – sequence: 1
  givenname: Roberto
  orcidid: 0000-0003-0936-2123
  surname: Confalonieri
  fullname: Confalonieri, Roberto
  email: confalonieri@iiia.csic.es
  organization: Artificial Intelligence Research Institute (IIIA-CSIC), Campus Universitat Autònoma Barcelona
– sequence: 2
  givenname: Manfred
  surname: Eppe
  fullname: Eppe, Manfred
  organization: International Computer Science Institute
– sequence: 3
  givenname: Marco
  surname: Schorlemmer
  fullname: Schorlemmer, Marco
  organization: Artificial Intelligence Research Institute (IIIA-CSIC), Campus Universitat Autònoma Barcelona
– sequence: 4
  givenname: Oliver
  surname: Kutz
  fullname: Kutz, Oliver
  organization: Research Centre for Knowledge and Data (KRDB), Free University of Bozen-Bolzano
– sequence: 5
  givenname: Rafael
  surname: Peñaloza
  fullname: Peñaloza, Rafael
  organization: Research Centre for Knowledge and Data (KRDB), Free University of Bozen-Bolzano
– sequence: 6
  givenname: Enric
  surname: Plaza
  fullname: Plaza, Enric
  organization: Artificial Intelligence Research Institute (IIIA-CSIC), Campus Universitat Autònoma Barcelona
BookMark eNotkM1qwzAQhEVJoUnaB-hNL6BU_5KPIfQPAr00ZyHbq1TBkYzs0NevQsoedhmYZeZboUXKCRB6ZnTDKDUvE6PScEKZJo3iktg7tGTKCGKkoYt6U8YJl1I8oNU0nSiljbZ6ifaH8deXHhcIMcEZ0ozzCMXPuUw45IK7nDoY54sfcDtA6mM64pjw_AO4h6krcZxjTnjIx9g9ovvghwme_vcaHd5ev3cfZP_1_rnb7smRKW5J0IZLoEGKELjq-y5AY73kNrRCCMuuyRphfaO0aRlrOwuaQetbRYXVqhVrtLn9PfoBXEwhz8V3dXo4xxq4dqn61jAtTcO0qgZ-M0xjqQWguFO-lFQzOkbdFaC7AXQVoLsCdFb8ARN6Zc4
ContentType Journal Article
Copyright Springer International Publishing Switzerland 2016
COPYRIGHT 2018 Springer
Copyright_xml – notice: Springer International Publishing Switzerland 2016
– notice: COPYRIGHT 2018 Springer
DOI 10.1007/s10472-016-9524-8
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 99
ExternalDocumentID A716479165
10_1007_s10472_016_9524_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z92
ZMTXR
~A9
~EX
AAPKM
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-g1528-f6724e0f43ff25ddcfe98a428fb333819686938a9567b11bc8e61ebab503865b3
IEDL.DBID RSV
ISSN 1012-2443
IngestDate Sat Nov 29 09:48:21 EST 2025
Fri Feb 21 02:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-3
Keywords 89.20.Ff
Conceptual blending
Computational creativity
Description logic
Answer set programming
07.05.Mh
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g1528-f6724e0f43ff25ddcfe98a428fb333819686938a9567b11bc8e61ebab503865b3
ORCID 0000-0003-0936-2123
PageCount 31
ParticipantIDs gale_infotracacademiconefile_A716479165
springer_journals_10_1007_s10472_016_9524_8
PublicationCentury 2000
PublicationDate 20180300
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 3
  year: 2018
  text: 20180300
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Annals of mathematics and artificial intelligence
PublicationTitleAbbrev Ann Math Artif Intell
PublicationYear 2018
Publisher Springer International Publishing
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer
References Spackman, K., Campbell, K., Cote, R.: SNOMED RT: A reference terminology for health care. Journal of the American Medical Informatics Association (1997)
McCarthyJApplications of circumscription to forMalizing common-sense knowledgeArtif. Intell.19862818911683229510.1016/0004-3702(86)90032-9
Baader, F., Morawska, B.: Rewriting Techniques and Applications: 20th International Conference, RTA 2009 Brasília, Brazil, 2009 Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, chap Unification in the Description Logic EL, pp. 350–364 (2009)
van der LaagPRNienhuys-ChengSHCompleteness and properness of refinement operators in inductive logic programmingJ. Log. Programm.1998343201225148597110.1016/S0743-1066(97)00077-00905.68027
Baral C: Knowledge representation, reasoning and declarative problem solving. Cambridge University Press (2003)
LeeJPallaRReformulating the situation calculus and the event calculus in the general theory of stable models and in answer set programmingJ. Artif. Intell. Res.20124357162029545731246.68210
Hois, J., Kutz, O., Mossakowski, T., Bateman, J.: Towards ontological blending. In: Dicheva, D., Dochev, D. (eds.) Artificial Intelligence: Methodology, Systems, and Applications, Lecture Notes in Computer Science, vol. 6304, pp 263–264. Springer, Berlin (2010)
Eppe, M., Bhatt, M., Suchan, J., Tietzen, B.: ExpCog: experiments in commonsense cognitive robotics. In: International Workshop on Cognitive Robotics (CogRob) (2014)
Confalonieri, R., Corneli, J., Pease, A., Plaza, E., Schorlemmer, M.: Using argumentation to evaluate concept blends in combinatorial creativity. In: Proceedings of the 6th International Conference on Computational Creativity, ICCC15 (2015a)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference on Logic Programming, (ICLP’88), pp 1070–1080. The MIT Press (1988)
Zarrieß, B, Turhan, A.Y.: Most specific generalizations w.r.t. general E𝓛\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {E}\mathcal {L}$\end{document}-TBoxes. In: Proceedings of the 23th International Joint Conference on Artificial Intelligence, AAAI Press, IJCAI’13, pp 1191–1197 (2013)
EppeMBhattMApproximate postdictive reasoning with answer set programmingJ. Appl. Log.2015134, Part 3676719342356310.1016/j.jal.2015.08.00206512053
Eppe, M., Maclean, E., Confalonieri, R., Kutz, O., Schorlemmer, W.M., Plaza, E.: ASP, amalgamation, and the conceptual blending workflow. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015, pp 309–316. Proceedings, KY, USA (2015b)
Kutz, O., Bateman, J., Neuhaus, F., Mossakowski, T., Bhatt, M.: E pluribus unum: Formalisation, use-cases, and computational support for conceptual blending. In: Computational Creativity Research: Towards Creative Machines, Thinking Machines, Atlantis/Springer (2014)
Turhan, A., Zarrieß, B: Computing the lcs w.r.t. general 𝓔𝓛+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {E}\mathcal {L}^{+}$\end{document}-TBoxes. In: Proceedings of the 26th International Workshop on Description Logics, pp 477–488 (2013)
LehmannJHitzlerPConcept learning in description logics using refinement operatorsMach. Learn.2010781-2203250310813710.1007/s10994-009-5146-2
Eppe, M., Confalonieri, R., Maclean, E., Kaliakatsos-Papakostas, M.A., Cambouropoulos, E., Schorlemmer, W.M., Codescu, M., Kühnberger, K: Computational invention of cadences and chord progressions by conceptual chord-blending. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp 2445–2451. AAAI Press, Buenos Aires, Argentina (2015a)
Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp 364–369. Morgan Kaufmann Publishers Inc., CA, USA (2005)
OntañónSPlazaESimilarity measures over refinement graphsMach. Learn. J.20128715792290432610.1007/s10994-011-5274-31238.68128
Confalonieri, R., Eppe, M., Schorlemmer, M., Kutz, O., Peñaloza, R, Plaza, E.: Upward refinement for conceptual blending in description logic —an ASP-based approach and case study in 𝓔𝓛++\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {E}\mathcal {L}^{++}$\end{document}. In: Proceedings of 1st International workshop of Ontologies and Logic Programming for Query Answering, ONTOLP 2015, co-located with IJCAI-2015 (2015b)
Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning, Lake District of the United Kingdom, pp 57–67. AAAI Press (2006)
Baader, F.: Computing the least common subsumer in the description logic E𝓛\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {E}\mathcal {L}$\end{document} w.r.t. terminological cycles with descriptive semantics. In: Ganter, B., De Moor, A., Lex, W. (eds.) Conceptual Structures for Knowledge Creation and Communication, Lecture Notes in Computer Science, vol. 2746, pp 117–130. Springer, Berlin Heidelberg (2003)
Sánchez-Ruiz, A, Ontañón, S, González-Calero, P, Plaza, E.: Refinement-based similarity measure over DL conjunctive queries. In: Delany, S., Ontañón, S. (eds.) Case-Based Reasoning Research and Development, Lecture Notes in Computer Science, vol. 7969, pp 270–284. Springer, Berlin (2013)
EiterTIanniGLukasiewiczTSchindlauerRTompitsHCombining answer set programming with description logics for the semantic webArtif. Intell.200817212–1314951539243289110.1016/j.artint.2008.04.0021183.68595
Besold TR, Plaza E: Generalize and blend: concept blending based on generalization, analogy, and amalgams. In: Proceedings of the 6th International Conference on Computational Creativity, ICCC15 (2015)
ConfalonieriRPradeHUsing possibilistic logic for modeling qualitative decision: answer set programming algorithmsInt. J. Approximate Reasoning2014552711738315791910.1016/j.ijar.2013.11.0021316.68173
Baader, F.: A graph-theoretic generalization of the least common subsumer and the most specific concept in the description logic E𝓛\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {E}\mathcal {L}$\end{document}. In: Hromkovic, J., Nagl, M., Westfechtel, B. (eds.) Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol. 3353, pp 177–188. Springer, Berlin (2005)
Bou, F., Eppe, M., Plaza, E., Schorlemmer, M.: D2.1: Reasoning with amalgams. Technical Report, COINVENT Project, available at http://www.coinvent-project.eu/fileadmin/publications/D2.1.eps (2014)
ToivonenHGrossOData mining and machine learning in computational creativityWiley Interdisc. Rev. Data Min. Knowl. Discov.20155626527510.1002/widm.1170
Cornet, R., De Keizer, N.: Forty years of SNOMED: a literature review. BMC Med. Inf. Decis. Making 8(Suppl 1) (2008)
BaaderFSertkayaBTurhanAYComputing the least common subsumer w.r.t. a background terminologyJ. Appl. Log.200753392420232818810.1016/j.jal.2006.03.0021122.68117
Baader, F., Küsters, R: Non-standard inferences in description logics: the story so far. In: Gabbay, D.M., Goncharov, S.S., Zakharyaschev, M. (eds.) Mathematical Problems from Applied Logic I, International Mathematical Series, vol. 4, pp 1–75. Springer, New York (2006)
Clavel, M., Durán, F, Eker, S., Lincoln, P., Martí-Oliet, N, Meseguer, J., Talcott, C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) Rewriting Techniques and Applications (RTA 2003), pp 76–87. Springer-Verlag, no. 2706 in Lecture Notes in Computer Science (2003)
Kowalski, R.: Predicate logic as programming language. In: Proceedings of International Federation for Information Processing, pp 569–574 (1974)
RiccaFGallucciLSchindlauerRDell’ArmiTGrassoGLeoneNOntoDLV: An ASP-based system for enterprise ontologiesJ. Log. Comput.2009194643670252573210.1093/logcom/exn0421192.68132
Eppe, M., Bhatt, M., Dylla, F.: Approximate epistemic planning with postdiction as answer-set programming. In: Cabalar, P., Son, T.C. (eds.) Proceedings of the 12th International Conference Logic Programming and Nonmonotonic Reasoning, LPNMR 2013, Corunna, Spain, pp 290–303. Springer, Berlin (2013)
Bou, F., Schorlemmer, M., Corneli, J., Gomez-Ramirez, D., Maclean, E., Smail, A., Pease, A.: The role of blending in mathematical invention. In: Proceedings of the 6th International Conference on Computational Creativity, ICCC15 (2015)
GelfondMKahlYKnowledge representation, reasoning, and the design of intelligent agents: the answer-set programming approach2014New YorkCambridge University Press10.1017/CBO9781139342124
Mendez, J.: jcel: A modular rule-based reasoner. In: proceedings of the 1st International Workshop on OWL Reasoner Evaluation (ORE), p 858 (2012)
Swift, T.: Deduction in Ontologies via ASP. In: Lifschitz, V., Niemelä, I. (eds.) Logic Programming and Nonmonotonic Reasoning, Lecture Notes in Computer Science, vol. 2923, pp 275–288. Springer, Berlin (2004)
Gebser, M., Kaminski, R., Kaufmann, B., Lind
References_xml – reference: Baader, F.: Computing the least common subsumer in the description logic E𝓛\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {E}\mathcal {L}$\end{document} w.r.t. terminological cycles with descriptive semantics. In: Ganter, B., De Moor, A., Lex, W. (eds.) Conceptual Structures for Knowledge Creation and Communication, Lecture Notes in Computer Science, vol. 2746, pp 117–130. Springer, Berlin Heidelberg (2003)
– reference: Bou, F., Schorlemmer, M., Corneli, J., Gomez-Ramirez, D., Maclean, E., Smail, A., Pease, A.: The role of blending in mathematical invention. In: Proceedings of the 6th International Conference on Computational Creativity, ICCC15 (2015)
– reference: Turhan, A., Zarrieß, B: Computing the lcs w.r.t. general 𝓔𝓛+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {E}\mathcal {L}^{+}$\end{document}-TBoxes. In: Proceedings of the 26th International Workshop on Description Logics, pp 477–488 (2013)
– reference: Baader, F., Morawska, B.: Rewriting Techniques and Applications: 20th International Conference, RTA 2009 Brasília, Brazil, 2009 Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, chap Unification in the Description Logic EL, pp. 350–364 (2009)
– reference: Spackman, K., Campbell, K., Cote, R.: SNOMED RT: A reference terminology for health care. Journal of the American Medical Informatics Association (1997)
– reference: OntañónSPlazaESimilarity measures over refinement graphsMach. Learn. J.20128715792290432610.1007/s10994-011-5274-31238.68128
– reference: Baader, F., Küsters, R: Non-standard inferences in description logics: the story so far. In: Gabbay, D.M., Goncharov, S.S., Zakharyaschev, M. (eds.) Mathematical Problems from Applied Logic I, International Mathematical Series, vol. 4, pp 1–75. Springer, New York (2006)
– reference: Baral C: Knowledge representation, reasoning and declarative problem solving. Cambridge University Press (2003)
– reference: ConfalonieriRNievesJCNested preferences in answer set programmingFundamenta Informaticae20111131193929083071243.68140
– reference: GelfondMKahlYKnowledge representation, reasoning, and the design of intelligent agents: the answer-set programming approach2014New YorkCambridge University Press10.1017/CBO9781139342124
– reference: Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference on Logic Programming, (ICLP’88), pp 1070–1080. The MIT Press (1988)
– reference: Hois, J., Kutz, O., Mossakowski, T., Bateman, J.: Towards ontological blending. In: Dicheva, D., Dochev, D. (eds.) Artificial Intelligence: Methodology, Systems, and Applications, Lecture Notes in Computer Science, vol. 6304, pp 263–264. Springer, Berlin (2010)
– reference: Fauconnier, G., Turner, M.: The Way we Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books (2002)
– reference: Eppe, M., Maclean, E., Confalonieri, R., Kutz, O., Schorlemmer, W.M., Plaza, E.: ASP, amalgamation, and the conceptual blending workflow. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015, pp 309–316. Proceedings, KY, USA (2015b)
– reference: Confalonieri, R., Eppe, M., Schorlemmer, M., Kutz, O., Peñaloza, R, Plaza, E.: Upward refinement for conceptual blending in description logic —an ASP-based approach and case study in 𝓔𝓛++\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {E}\mathcal {L}^{++}$\end{document}. In: Proceedings of 1st International workshop of Ontologies and Logic Programming for Query Answering, ONTOLP 2015, co-located with IJCAI-2015 (2015b)
– reference: Baader, F.: A graph-theoretic generalization of the least common subsumer and the most specific concept in the description logic E𝓛\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {E}\mathcal {L}$\end{document}. In: Hromkovic, J., Nagl, M., Westfechtel, B. (eds.) Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol. 3353, pp 177–188. Springer, Berlin (2005)
– reference: Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp 364–369. Morgan Kaufmann Publishers Inc., CA, USA (2005)
– reference: EppeMBhattMApproximate postdictive reasoning with answer set programmingJ. Appl. Log.2015134, Part 3676719342356310.1016/j.jal.2015.08.00206512053
– reference: RiccaFGallucciLSchindlauerRDell’ArmiTGrassoGLeoneNOntoDLV: An ASP-based system for enterprise ontologiesJ. Log. Comput.2009194643670252573210.1093/logcom/exn0421192.68132
– reference: EiterTIanniGLukasiewiczTSchindlauerRTompitsHCombining answer set programming with description logics for the semantic webArtif. Intell.200817212–1314951539243289110.1016/j.artint.2008.04.0021183.68595
– reference: LehmannJHitzlerPConcept learning in description logics using refinement operatorsMach. Learn.2010781-2203250310813710.1007/s10994-009-5146-2
– reference: Confalonieri, R., Corneli, J., Pease, A., Plaza, E., Schorlemmer, M.: Using argumentation to evaluate concept blends in combinatorial creativity. In: Proceedings of the 6th International Conference on Computational Creativity, ICCC15 (2015a)
– reference: Eppe, M., Bhatt, M., Dylla, F.: Approximate epistemic planning with postdiction as answer-set programming. In: Cabalar, P., Son, T.C. (eds.) Proceedings of the 12th International Conference Logic Programming and Nonmonotonic Reasoning, LPNMR 2013, Corunna, Spain, pp 290–303. Springer, Berlin (2013)
– reference: Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary report. CoRR arXiv:1405.3694 (2014)
– reference: Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J., Schaub, T., Thiele, S.: Potassco User Guide 2.0. Technical Report, University of Potsdam (2015)
– reference: Zarrieß, B, Turhan, A.Y.: Most specific generalizations w.r.t. general E𝓛\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {E}\mathcal {L}$\end{document}-TBoxes. In: Proceedings of the 23th International Joint Conference on Artificial Intelligence, AAAI Press, IJCAI’13, pp 1191–1197 (2013)
– reference: Eppe, M., Confalonieri, R., Maclean, E., Kaliakatsos-Papakostas, M.A., Cambouropoulos, E., Schorlemmer, W.M., Codescu, M., Kühnberger, K: Computational invention of cadences and chord progressions by conceptual chord-blending. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, pp 2445–2451. AAAI Press, Buenos Aires, Argentina (2015a)
– reference: Lehmann, J., Haase, C.: Ideal Downward Refinement in the EL Description Logic. In: Proceedings of the 19th International Conference on Inductive Logic Programming, vol. ILP’09, pp 73–87. Springer, Berlin (2010)
– reference: Bou, F., Eppe, M., Plaza, E., Schorlemmer, M.: D2.1: Reasoning with amalgams. Technical Report, COINVENT Project, available at http://www.coinvent-project.eu/fileadmin/publications/D2.1.eps (2014)
– reference: Sánchez-Ruiz, A, Ontañón, S, González-Calero, P, Plaza, E.: Refinement-based similarity measure over DL conjunctive queries. In: Delany, S., Ontañón, S. (eds.) Case-Based Reasoning Research and Development, Lecture Notes in Computer Science, vol. 7969, pp 270–284. Springer, Berlin (2013)
– reference: Cornet, R., De Keizer, N.: Forty years of SNOMED: a literature review. BMC Med. Inf. Decis. Making 8(Suppl 1) (2008)
– reference: Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning, Lake District of the United Kingdom, pp 57–67. AAAI Press (2006)
– reference: Clavel, M., Durán, F, Eker, S., Lincoln, P., Martí-Oliet, N, Meseguer, J., Talcott, C.: The Maude 2.0 System. In: Nieuwenhuis, R. (ed.) Rewriting Techniques and Applications (RTA 2003), pp 76–87. Springer-Verlag, no. 2706 in Lecture Notes in Computer Science (2003)
– reference: ConfalonieriRPradeHUsing possibilistic logic for modeling qualitative decision: answer set programming algorithmsInt. J. Approximate Reasoning2014552711738315791910.1016/j.ijar.2013.11.0021316.68173
– reference: Eppe, M., Bhatt, M.: Narrative based postdictive reasoning for cognitive robotics. In: International Symposium on Logical Formalizations of Commonsense Reasoning (CR) (2013)
– reference: McCarthyJApplications of circumscription to forMalizing common-sense knowledgeArtif. Intell.19862818911683229510.1016/0004-3702(86)90032-9
– reference: Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Clark, K., Patel-Schneider, P.F. (eds.) Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and Directions (2008)
– reference: Kowalski, R.: Predicate logic as programming language. In: Proceedings of International Federation for Information Processing, pp 569–574 (1974)
– reference: Eppe, M., Bhatt, M., Suchan, J., Tietzen, B.: ExpCog: experiments in commonsense cognitive robotics. In: International Workshop on Cognitive Robotics (CogRob) (2014)
– reference: ToivonenHGrossOData mining and machine learning in computational creativityWiley Interdisc. Rev. Data Min. Knowl. Discov.20155626527510.1002/widm.1170
– reference: LeeJPallaRReformulating the situation calculus and the event calculus in the general theory of stable models and in answer set programmingJ. Artif. Intell. Res.20124357162029545731246.68210
– reference: Kutz, O., Bateman, J., Neuhaus, F., Mossakowski, T., Bhatt, M.: E pluribus unum: Formalisation, use-cases, and computational support for conceptual blending. In: Computational Creativity Research: Towards Creative Machines, Thinking Machines, Atlantis/Springer (2014)
– reference: Swift, T.: Deduction in Ontologies via ASP. In: Lifschitz, V., Niemelä, I. (eds.) Logic Programming and Nonmonotonic Reasoning, Lecture Notes in Computer Science, vol. 2923, pp 275–288. Springer, Berlin (2004)
– reference: Mendez, J.: jcel: A modular rule-based reasoner. In: proceedings of the 1st International Workshop on OWL Reasoner Evaluation (ORE), p 858 (2012)
– reference: Ontañón, S, Plaza, E.: Amalgams: A Formal Approach for Combining Multiple Case Solutions. In: Bichindaritz, I., Montani, S. (eds.) Proceedings of the International Conference on Case Base Reasoning, Springer, Lecture Notes in Computer Science, vol. 6176, pp 257–271 (2010)
– reference: Ma, J., Miller, R., Morgenstern, L., Patkos, T.: An epistemic event calculus for ASP-based reasoning about knowledge of the past, present and future. In: International Conference on Logic for Programming, Artificial Intelligence and Reasoning (2013)
– reference: BaaderFSertkayaBTurhanAYComputing the least common subsumer w.r.t. a background terminologyJ. Appl. Log.200753392420232818810.1016/j.jal.2006.03.0021122.68117
– reference: van der LaagPRNienhuys-ChengSHCompleteness and properness of refinement operators in inductive logic programmingJ. Log. Programm.1998343201225148597110.1016/S0743-1066(97)00077-00905.68027
– reference: Besold TR, Plaza E: Generalize and blend: concept blending based on generalization, analogy, and amalgams. In: Proceedings of the 6th International Conference on Computational Creativity, ICCC15 (2015)
SSID ssj0009686
Score 2.2229905
Snippet Conceptual blending is a mental process that serves a variety of cognitive purposes, including human creativity. In this line of thinking, human creativity is...
SourceID gale
springer
SourceType Aggregation Database
Publisher
StartPage 69
SubjectTerms Algorithms
Artificial Intelligence
Complex Systems
Computer Science
Creative ability
Mathematics
Title Upward refinement operators for conceptual blending in the description logic
URI https://link.springer.com/article/10.1007/s10472-016-9524-8
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: M7S
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLXY4AAHBgPE-JhyQOKAIq1N2rrHCTEhMSYEbNqtStME7bJN68bvJ-7aDSQucG-jyK797Np-BrhRRkk_0oKLGEMuJdmcZ5GHqpNZhSliMSE36keDAY7H8Us5x51X3e5VSbLw1N-G3WREbQQhjwNfcqzBrkM7JGt8fRttmXbDYr0j8VZxh12iKmX-dsTWD_-sghbg0mv861pHcFjGkqy7Vv4x7JhpExrVngZWmm0TDp433Kz5CfSHc-qUZQ4aXYRJPwfZbG6KanvOXAjL9HqSceWOTh0mEbixyZS5I1hmNl6GFU7zFIa9h_f7R17uVOAfDqmR2zDypelYKaz1gyzT1sTo1IU2FYKyNye9WKByaVOUel6q0YSeSVVKtDFhkIozqE9nU3MOTBOVu_a0RalklMXYEdp3Go-tUFlswhbcknATspTlQmlVNvy7t4lzKulSqha58DRowV0l26Q0oTzZ8imTgBPqRCMBJ3jxp6cvYd_FOLhuG7uC-nKxMtewpz-Xk3zRhtpTxNvFB_QFo7O_uQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqD06k4f-ZB8EECa5O26eMQx8RuiG5jbyVNE9lLN9bNv99c124Kvuh7G8Kld9-l9913AHdSS-4GilEWCp9yjj7nGEF92UqNFIkQRYfcKAr6fTEeh69lH3desd2rkmQRqb81u_EAaQQ-DT2XU7ENO9wCFvL43t5HG6VdvxjviLpV1GIXq0qZvy2xicM_q6AFuHTq_9rWERyWuSRprw7_GLZ01oB6NaeBlG7bgIPeWps1P4FoOEOmLLHQaDNM_DlIpjNdVNtzYlNYoladjEu7dGIxCcGNTDJilyCpXkcZUgTNUxh2ngaPXVrOVKAfFqkFNX7gct0ynBnjemmqjA6FPS5hEsbw9matFzIh7bUpSBwnUUL7jk5kgrIxvpewM6hl00yfA1Eo5a4cZQSXPEhD0WLKtSceGibTUPtNuEfjxugpi7lUsiT827dRcypu41UtsOmp14SHyrZx6UJ5vNFTRgPHyERDA8fi4k9P38Jed9CL4ui5_3IJ-zbfESsK2RXUFvOlvoZd9bmY5POb4jP6Aidfwc0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQHBgPEeOaAxAFFW5usTY8TMIEY0yTYtFuVpgnapZvWjt9P3McGEhfEvbUiN_Zn1_ZngBupJXd9xSgLhEc5R5tzjKCebMdGikiIfEJu3PcHAzGZBMNyz2ladbtXJclipgFZmpKsNY9N69vgG_expcCjQcflVGzCFsedQZiuv43XrLtevuoROayoxTFWlTV_E7H2yT8rojnQ9Or_PuIB7JcxJukWl-IQNnTSgHq1v4GU5tyAvdcVZ2t6BP3RHDtoiYVMG3niT0Mym-u8Cp8SG9oSVUw4Lq3oyGIVgh6ZJsSKILFeeR-SO9NjGPUe3--faLlrgX5YBBfUeL7LddtwZozbiWNldCDsZxQmYgyzOqvJgAlp0yk_cpxICe05OpIR0sl4nYidQC2ZJfoUiEKKd-UoI7jkfhyINlOuvQmBYTIOtNeEW1R0iBaULaSS5SCAfRu5qMIupnC-DVs7Tbir9ByWppWGa55lVHCIHWqo4FCc_enpa9gZPvTC_vPg5Rx2bRgkis6yC6hli6W-hG31mU3TxVV-o74AMEzKsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upward+refinement+operators+for+conceptual+blending+in+the+description+logic+%5BEL.sup.%2B%2B%5D&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Confalonieri%2C+Roberto&rft.au=Eppe%2C+Manfred&rft.au=Schorlemmer%2C+Marco&rft.au=Kutz%2C+Oliver&rft.date=2018-03-01&rft.pub=Springer&rft.issn=1012-2443&rft.volume=82&rft.issue=1-3&rft.spage=69&rft_id=info:doi/10.1007%2Fs10472-016-9524-8&rft.externalDocID=A716479165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon