Advances in Fractional Differential Operators and Their Applications

The application of generalized and fractional derivatives, such as Caputo and Riemann–Liouville derivatives, has witnessed a dramatic increase in recent years. This reprint focuses on related theoretical and applied research in areas such as the stability of time series, Lotka–Volterra systems, dist...

Celý popis

Uložené v:
Podrobná bibliografia
Médium: E-kniha
Jazyk:English
Vydavateľské údaje: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Predmet:
ISBN:9783036589053, 303658904X, 3036589058, 9783036589046
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The application of generalized and fractional derivatives, such as Caputo and Riemann–Liouville derivatives, has witnessed a dramatic increase in recent years. This reprint focuses on related theoretical and applied research in areas such as the stability of time series, Lotka–Volterra systems, distributed delays, Fornberg–Whitham equations, abstract evolution and fractional wave equations, cantilever beams, and fractional Riccati and Volterra equations, as well as fractional visco-elasto-plasticity, spectral theory for fractional Sturm–Liouville problems, generalized differential equations, Mittag–Leffler functions, and fractional Laplacians.
AbstractList The application of generalized and fractional derivatives, such as Caputo and Riemann–Liouville derivatives, has witnessed a dramatic increase in recent years. This reprint focuses on related theoretical and applied research in areas such as the stability of time series, Lotka–Volterra systems, distributed delays, Fornberg–Whitham equations, abstract evolution and fractional wave equations, cantilever beams, and fractional Riccati and Volterra equations, as well as fractional visco-elasto-plasticity, spectral theory for fractional Sturm–Liouville problems, generalized differential equations, Mittag–Leffler functions, and fractional Laplacians.
BookMark eNotj1FLwzAUhQMqqLP_QCR_IHrTm7TpY9ncFAZ7mc_jNk00WpLSFH-_q_p0OB8fB84tu4wpOsYeJDwiNvDUpfSVm9oIFICVFqYBLfCCFWeGC1kAXrMi508AwFLVSuobtmn7b4rWZR4i305k55AiDXwTvHeTi3M4l8PoJprTlDnFnh8_XJh4O45DsLTo-Y5deRqyK_5zxd62z8f1i9gfdq_rdi_epTKNsK6SqKCr0CsqDXlVNZZcaY2XKDu0SEi1pbIHX4NxAF1NzneaSClJGlfs_m830ejiqU_0e_skS6MrxB_2PU5o
ContentType eBook
DBID V1H
DOI 10.3390/books978-3-0365-8905-3
DatabaseName DOAB: Directory of Open Access Books
DatabaseTitleList
Database_xml – sequence: 1
  dbid: V1H
  name: DOAB: Directory of Open Access Books
  url: https://directory.doabooks.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Editor Dehghan, Mohammad
Zivlaei, Leila Gholizadeh
Mingarelli, Angelo B
Editor_xml – sequence: 1
  fullname: Mingarelli, Angelo B
– sequence: 2
  fullname: Zivlaei, Leila Gholizadeh
– sequence: 3
  fullname: Dehghan, Mohammad
ExternalDocumentID 128563
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
V1H
ID FETCH-LOGICAL-g1489-ce61340b63f4a28af469cae2c8f131b3c3a3a7ca2d0f708e00b7aefb5aa441a53
IEDL.DBID V1H
ISBN 9783036589053
303658904X
3036589058
9783036589046
IngestDate Tue Oct 07 22:46:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g1489-ce61340b63f4a28af469cae2c8f131b3c3a3a7ca2d0f708e00b7aefb5aa441a53
OpenAccessLink https://directory.doabooks.org/handle/20.500.12854/128563
PageCount 374
ParticipantIDs oapen_doabooks_128563
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationYear 2023
Publisher MDPI - Multidisciplinary Digital Publishing Institute
Publisher_xml – name: MDPI - Multidisciplinary Digital Publishing Institute
SSID ssj0003247415
Score 2.3212535
Snippet The application of generalized and fractional derivatives, such as Caputo and Riemann–Liouville derivatives, has witnessed a dramatic increase in recent years....
SourceID oapen
SourceType Publisher
SubjectTerms Abel–Lidskii basis property
Adomian decomposition method
Aleph functions
approximate solution
asymptotics
block pulse
boundedness
Cahn–Hilliard equation
cantilever beam
Caputo derivative
Caputo sense
Caputo’s derivatives
Concentration-Compactness Principle
cubic polynomial spline
definite integrals
determination of the order of derivative
distributed delay
eigenvalues
Euler–Lagrange theorem
evolution equations
existence
existence and uniqueness of minimizers
existence of solution
existence of solutions
Fourier method
Fox functions
fractional boundary value problem
fractional calculus
fractional differential equation
fractional differential equations
fractional diffusion equation
fractional Fornberg–Whitham equation
fractional Langevin equation
fractional Laplacian
fractional partial differential equations
fractional piecewise order derivative
fractional quasi-linear viscoelasticity
fractional Riccati differential equation
Fractional Sturm–Liouville
fractional wave equation
fractional-order nonlinear system
fractional-order operator
genus theory
gradient nonlinearity
homotopy analysis method
homotopy perturbation method
hyper-Bessel
input delay
instability
inverse problem
Laplace transform
leader–following consensus
Lotka–Volterra system
Mathematics and Science
Mellin-Barnes integrals
memory
Mittag-Leffler function
ML-kernel
model perturbation analysis
model stability
Mountain Pass Theorem
multi-order fractional differential equation
multiplicity of solutions
numerical simulation
operational matrix
operator function
p-derivative
partial differential equation
power-law visco-elasto-plasticity
Razumikhin approach
Reference, Information and Interdisciplinary subjects
Research and information: general
residual power series
Riemann–Liouville derivatives
Saxena function
Schatten–von Neumann class
sequence operator
Sinc methods
Sinc quadrature
space-fractional Fisher’s equation
stability
stability results
Taylor polynomials
time series
time-fractional integration
two dimensional Volterra integral equation
UH-type stability
variable exponents
variable kernel
variational iteration method
variational methods
von Neumann stability
κ(x)-Laplacian
χ-Hilfer fractional derivative
Title Advances in Fractional Differential Operators and Their Applications
URI https://directory.doabooks.org/handle/20.500.12854/128563
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWACRBFveWA1tePYccaKUnUqDAV1q84vVKlKq6bw-7HjUoWBiSWSc1IUn2Xffb7Hh9CD1AxE4TURSgaAAk4QbTUjsnRG2zw4CN40ZBPFZKJms_K1RfWVDvJVzGpeQfQz6yacn1oOBKT-KGjsiKBE3o9PyQ9RN0AcGbO53tl4f70S_IRoK2M1RzijhSppPmsNhErNd_ZC-XsseKom5ryk_eY3UhpBFJMoJzwyJMHaVS1zNDr5x0ROUdfF-oYzdOCqczQcpByAGi8qPNqkKgdY4uGONyXs_yV-WbsmGF_j8Fk8jaEFPGgFvnvobfQ8fRqTHbEC-QjopyTGBSOeUy25zyFT4ANGNuAyozzjTHPDgUNhILPUF1Q5SnUBzmsBELwnEPwCdapV5S4RtlpayjQARGjDM9CZFbl1nllmMg9XqNdoaf6jhXma7fUf72_QcSR0T5cct6iz3Xy6O3RkvraLenPfrPE3wnuiVA
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Advances+in+Fractional+Differential+Operators+and+Their+Applications&rft.date=2023-01-01&rft.pub=MDPI+-+Multidisciplinary+Digital+Publishing+Institute&rft.isbn=9783036589053&rft_id=info:doi/10.3390%2Fbooks978-3-0365-8905-3&rft.externalDBID=V1H&rft.externalDocID=128563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783036589053/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783036589053/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783036589053/sc.gif&client=summon&freeimage=true