Parallel genetic algorithms for optimised fuzzy modelling with application to a fermentation process

This paper reports the construction and application of an evolution program to a computational intelligence system used as a software `sensor' in state-estimation and prediction of biomass concentration in a fermentation process. A fuzzy logic system (FLS) is used as a computational engine to `...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEE conference publication s. 123 - 128
Hlavní autor: Soufian, M
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: London IEE 1997
Témata:
ISBN:9780852966938, 0852966938
ISSN:0537-9989
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper reports the construction and application of an evolution program to a computational intelligence system used as a software `sensor' in state-estimation and prediction of biomass concentration in a fermentation process. A fuzzy logic system (FLS) is used as a computational engine to `infer' the production of biomass from variables easily measured on-line. For this purpose, genetic algorithms (GAs) are employed to train and tune the desired parameters of the fuzzy logic system. It is shown that the fuzzy logic system, which was tuned by two genetic algorithms implemented in parallel, produces better results in prediction of biomass concentration. The mean sum of squared errors and graphical fit are used to compare the performance of the genetically optimised FLS with artificial neural networks (ANN), which is trained using Levenberg-Marquardt second-order nonlinear optimisation method.
ISBN:9780852966938
0852966938
ISSN:0537-9989
DOI:10.1049/cp:19971167