Dynamic evaluation of a COVID-19 death prediction model using Extreme Gradient Boosting Predictive Model/Modelo preditivo de avaliaçao dinâmica de morte por COVID-19 usando Extreme Gradient Boosting/Evaluacion dinámica de un modelo de prediccion de muertes por COVID-19 utilizando modelo Extreme Gradient Boosting

The COVID-19 pandemic has evolved dynamically with the emergence of new variants and an increase in vaccination coverage. Given the high fatality rate of severe COVID-19, disease severity prediction models must incorporate these temporal variations. In this light, the present study seeks to develop...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ciência & saude coletiva Ročník 30; číslo 7; s. 1 - 15
Hlavní autori: Prado, Jose Carlos, Evsukoff, Alexandre, Andrade Medronho, Roberto de
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Associacao Brasileira de Pos-Graduacao em Saude Coletiva - ABRASCO 01.07.2025
Predmet:
ISSN:1413-8123
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The COVID-19 pandemic has evolved dynamically with the emergence of new variants and an increase in vaccination coverage. Given the high fatality rate of severe COVID-19, disease severity prediction models must incorporate these temporal variations. In this light, the present study seeks to develop a model to predict COVID-19 mortality in hospitalized patients. The Extreme Gradient Boost model was used to predict COVID-19 mortality upon hospital admission, and the results were correlated with laboratory test results, vaccination status, comorbidities, and clinical signs and symptoms at the time of admission. Clinical data from electronic medical records, vaccination databases, and severe acute respiratory syndrome (SARS) reports were used. The XGBoost model performed best, with an area under the curve (AUC) of 96.4% at epidemiological week 53 of 2020. The most significant variables for the model were body temperature, blood pressure, respiratory rate, heart rate, urea, magnesium, sodium, and C reactive protein levels. Our study identified key clinical and laboratory variables for predicting COVID-19 mortality.
AbstractList The COVID-19 pandemic has evolved dynamically with the emergence of new variants and an increase in vaccination coverage. Given the high fatality rate of severe COVID-19, disease severity prediction models must incorporate these temporal variations. In this light, the present study seeks to develop a model to predict COVID-19 mortality in hospitalized patients. The Extreme Gradient Boost model was used to predict COVID-19 mortality upon hospital admission, and the results were correlated with laboratory test results, vaccination status, comorbidities, and clinical signs and symptoms at the time of admission. Clinical data from electronic medical records, vaccination databases, and severe acute respiratory syndrome (SARS) reports were used. The XGBoost model performed best, with an area under the curve (AUC) of 96.4% at epidemiological week 53 of 2020. The most significant variables for the model were body temperature, blood pressure, respiratory rate, heart rate, urea, magnesium, sodium, and C reactive protein levels. Our study identified key clinical and laboratory variables for predicting COVID-19 mortality. Key words Predictive modeling, COVID-19, Mortality, Machine learning, XGBoost algorithm Resumo A pandemia de COVID-19 evoluiu de forma dinâmica com o surgimento de novas variantes e o aumento da cobertura vacinal. Dada a alta taxa de mortalidade da COVID-19 grave, os modelos de previsao de gravidade da doença precisam incorporar essas variações temporais. Este estudo teve como objetivo desenvolver um modelo para prever a mortalidade por COVID-19 em pacientes hospitalizados. O modelo Extreme Gradient Boost (XGBoost) foi utilizado para prever a mortalidade por COVID-19 na admissao hospitalar, e os resultados foram correlacionados com os resultados de exames laboratoriais, status vacinal, comorbidades e sinais e sintomas clínicos no momento da admissao. Dados clínicos de prontuários eletrônicos, bancos de dados de vacinaçao e notificações de síndrome respiratoria aguda grave foram utilizados. O modelo XGBoost obteve o melhor desempenho, com uma área sob a curva (AUC) de 96,4% na semana epidemiologica 53 de 2020. As variáveis mais significativas para o modelo foram temperatura corporal, pressao arterial, taxa respiratoria, frequência cardíaca, ureia, magnesio, níveis de sodio e proteína C reativa. Nosso estudo identificou variáveis clínicas e laboratoriais chave para a previsao de mortalidade por COVID-19. Palavras-chave Modelagem preditiva, COVID-19, Mortalidade, Aprendizado de máquina, Algoritmo XGBoost La pandemia de COVID-19 ha evolucionado dinámicamente con la aparicion de nuevas variantes y la progresion de la cobertura de vacunacion. Dada la alta tasa de mortalidad de la COVID-19 grave, los modelos de prediccion de la gravedad de la enfermedad deben incorporar estas variaciones temporales. En este estudio pretendemos entrenar un modelo para predecir la muerte de pacientes hospitalizados por COVID-19. Se utilizaron modelos predictivos de aprendizaje automático para predecir las muertes por COVID-19 al momento del ingreso hospitalario, y los resultados se correlacionaron con los resultados de las pruebas de laboratorio, el estado de vacunacion, las comorbilidades y los signos y síntomas en el momento del ingreso. Se utilizaron datos clínicos de historias clínicas electronicas, bases de datos de vacunacion y notificaciones de síndrome respiratorio agudo severo. El modelo predictivo XGBoost tuvo el mejor rendimiento, con un área bajo la curva (AUC) del 96,4% en la semana epidemiologica 53 de 2020. Las variables más significativas para el modelo fueron la temperatura, la presion arterial, la frecuencia respiratoria, la frecuencia cardíaca, y niveles de urea, magnesio, sodio y proteína C reactiva. Nuestro estudio identifico variables clínicas y de laboratorio clave para predecir la mortalidad por COVID-19. Palabras clave Modelado predictivo, COVID-19, Mortalidad, Aprendizaje automático, Modelo XGBoost
The COVID-19 pandemic has evolved dynamically with the emergence of new variants and an increase in vaccination coverage. Given the high fatality rate of severe COVID-19, disease severity prediction models must incorporate these temporal variations. In this light, the present study seeks to develop a model to predict COVID-19 mortality in hospitalized patients. The Extreme Gradient Boost model was used to predict COVID-19 mortality upon hospital admission, and the results were correlated with laboratory test results, vaccination status, comorbidities, and clinical signs and symptoms at the time of admission. Clinical data from electronic medical records, vaccination databases, and severe acute respiratory syndrome (SARS) reports were used. The XGBoost model performed best, with an area under the curve (AUC) of 96.4% at epidemiological week 53 of 2020. The most significant variables for the model were body temperature, blood pressure, respiratory rate, heart rate, urea, magnesium, sodium, and C reactive protein levels. Our study identified key clinical and laboratory variables for predicting COVID-19 mortality.
Audience Academic
Author Evsukoff, Alexandre
Prado, Jose Carlos
Andrade Medronho, Roberto de
Author_xml – sequence: 1
  fullname: Prado, Jose Carlos
– sequence: 2
  fullname: Evsukoff, Alexandre
– sequence: 3
  fullname: Andrade Medronho, Roberto de
BookMark eNp1Ut1OFDEUHhJMBPQdSrzyYnbbaTs_CTe4LLgRAxfq7eZse2YtmWnJtEOAt9EbH4QXszO7ChhJk_6c8_216X6ya53FJDlkdMJkRadMMJ6WLOMZzSSnxYSVjMW92E32_vZeJ_veX1GaFVxkeztHJ3cWWqMI3kDTQzDOElcTILOLb4uTlFVEI4Tv5LpDbdTYbp3GhvTe2DWZ34YOWyRnHWiDNpAPzvkwdC63hBsknwfCdJzdRiiWXRQmEE0NPPyCeDL24WcMAkO9dV1Acu26xxi9B6vdy4bT-XgBNSQctH780eq3iUfDzTU2oGjTY_Tx_xgF05j70WzLe9HzTfKqhsbj2-16kHw9nX-ZfUzPL84Ws-PzdM0oo6mSlS5LJXJRUC1XJROUoazKmmcSmChlIYEXRbWSWuaC0nyVI8VCMagkV5zxg-TdRncNDS6NrV3oQLXGq-VxKXMmZE5pRE3-g4pDY3yL-FVqE-vPCO-fESIm4G1YQ-_98tPl4in2N3WfxBw
ContentType Journal Article
Copyright COPYRIGHT 2025 Associacao Brasileira de Pos-Graduacao em Saude Coletiva - ABRASCO
Copyright_xml – notice: COPYRIGHT 2025 Associacao Brasileira de Pos-Graduacao em Saude Coletiva - ABRASCO
DBID KPI
INF
DOI 10.1590/1413-81232025307.18112024
DatabaseName Gale In Context: Global Issues
Gale OneFile: Informe Academico
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Public Health
ExternalDocumentID A856145600
GeographicLocations Brasil
América Latina
GeographicLocations_xml – name: América Latina
– name: Brasil
GroupedDBID 2WC
53G
5GY
5VS
7RV
7X7
88E
8C1
8FE
8FG
8FI
8FJ
8G5
ABDHV
ABJCF
ABUWG
ABXHO
ACHQT
ACIWK
ADBBV
AFFHD
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
APOWU
AZQEC
BAIFH
BAWUL
BBTPI
BCNDV
BENPR
BGLVJ
BKEYQ
BPHCQ
BVXVI
CCPQU
C~G
DIK
DU5
DWQXO
E3Z
EBD
EBS
ECGQY
EJD
EMOBN
F5P
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
IAO
INF
INH
INR
ITC
J34
KPI
KQ8
L6V
M1P
M2O
M7S
NAPCQ
OK1
OVT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
RDY
RNS
RSC
RSL
RZL
SCD
SV3
UKHRP
XSB
ID FETCH-LOGICAL-g1010-c59d88c46470d5b81401e598f325a148575a3779b5d564006b6e0e7c1a953c313
ISSN 1413-8123
IngestDate Sat Nov 29 13:46:39 EST 2025
Tue Nov 04 18:09:44 EST 2025
Thu Nov 13 15:53:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g1010-c59d88c46470d5b81401e598f325a148575a3779b5d564006b6e0e7c1a953c313
PageCount 15
ParticipantIDs gale_infotracmisc_A856145600
gale_infotracacademiconefile_A856145600
gale_incontextgauss_KPI_A856145600
PublicationCentury 2000
PublicationDate 20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 20250701
  day: 01
PublicationDecade 2020
PublicationTitle Ciência & saude coletiva
PublicationYear 2025
Publisher Associacao Brasileira de Pos-Graduacao em Saude Coletiva - ABRASCO
Publisher_xml – name: Associacao Brasileira de Pos-Graduacao em Saude Coletiva - ABRASCO
SSID ssj0027342
Score 2.36882
Snippet The COVID-19 pandemic has evolved dynamically with the emergence of new variants and an increase in vaccination coverage. Given the high fatality rate of...
SourceID gale
SourceType Aggregation Database
StartPage 1
Title Dynamic evaluation of a COVID-19 death prediction model using Extreme Gradient Boosting Predictive Model/Modelo preditivo de avaliaçao dinâmica de morte por COVID-19 usando Extreme Gradient Boosting/Evaluacion dinámica de un modelo de prediccion de muertes por COVID-19 utilizando modelo Extreme Gradient Boosting
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  issn: 1413-8123
  databaseCode: M7S
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com
  omitProxy: false
  ssIdentifier: ssj0027342
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  issn: 1413-8123
  databaseCode: 7X7
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/healthcomplete
  omitProxy: false
  ssIdentifier: ssj0027342
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  issn: 1413-8123
  databaseCode: 7RV
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/nahs
  omitProxy: false
  ssIdentifier: ssj0027342
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1413-8123
  databaseCode: BENPR
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: false
  ssIdentifier: ssj0027342
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (ProQuest)
  issn: 1413-8123
  databaseCode: 8C1
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/publichealth
  omitProxy: false
  ssIdentifier: ssj0027342
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  issn: 1413-8123
  databaseCode: PIMPY
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://search.proquest.com/publiccontent
  omitProxy: false
  ssIdentifier: ssj0027342
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  issn: 1413-8123
  databaseCode: M2O
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/pqrl
  omitProxy: false
  ssIdentifier: ssj0027342
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEDZtQQgJIZ6iUJBBSByiaDfvROKy3ZaHoO2Klqq3ynlsiWhjlGxW_Ttw4S9w7x9jZuw8FnWlcuCSzcbJfHY8XzxxxjOMvXKjzHMSOzSFb0emGwrXFNk0M0USJGngx8KjLAqHn4Ld3fDoKJqsrP5u1sLMT4OiCM_Po-__tavhGHQ2Lp39h-5uhcIB2IdOhy10O2yv1PFbKsd8L463WgM53jv8sGVakZGi1YfBAdJc5QmnbDhGTbMG2-cznDE03pXkCzbDxRAVuUZP9AWYrQgvgBrSr1SioECCaEPMceaEvr8HAo7kBe3bGJYAy8_Qu9cAq7-rEDoGpXI5NCBtU2MSrG0j0Wok1roFBK-apU4EsDorcWJ5EW6Woy8bQurrliL3TfdxTrAjjE9ChKlEnaKvP4Yvn7ej2wRkyObbCvrTnMrea0tVf5M6DqZaWdT5HqNrqQCBO1layuKr7Pzepcrh3s7O2F7ryav5pDiWwP3eLEUFD_q8pFszkZWJjaqpLDsz9qnOY11nwzRGm59H--O93tgE9oYJ9pjTH7z0Ry1F0qA3ElmXjo9eNKQIC1oS1tjBKcYQzO6hWsy-GJP84-SymOSjEAPIorG8yq7bgRehM-WOvddNdTiUtqoFusleaPjBUnBtFPXMu4O77I5-L-Mjxad7bCUr7rPbalKbq7V6D6690dziHbe4nHLBG93ixC3ecYuThnHiFtdqxhs1442a8Y5bnDg1UMziLbNAMFfMuvgl4F9eXPxE_cfjxCgOKt5VQzFqOeCg4xPJ-tHIqnWNCbDjEsEoLv0F1HKpuW4p5kP25e32wfi9qdOvmCcWusgkXpSGYeL6bjBMvRhD41kZdPXUsT1huZjaV2C40thLPR9MAT_2s2EWJJaI4PHvWM4jtlbIInvMeOrZcZhM46GdgTUcBCK2vNR3w3iYTi3HidfZS-z6YwxIU6DH24moq-oYlO-4U7V19lqfNJWzEnijFxABBMawWzhzY-FMGDGTXvGTq6A9Zbc6Pm-wtVlZZ8_YjWQ-y6vyOWn7HzadO48
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+evaluation+of+a+COVID-19+death+prediction+model+using+Extreme+Gradient+Boosting+Predictive+Model%2FModelo+preditivo+de+avalia%C3%A7ao+din%C3%A2mica+de+morte+por+COVID-19+usando+Extreme+Gradient+Boosting%2FEvaluacion+din%C3%A1mica+de+un+modelo+de+prediccion+de+muertes+por+COVID-19+utilizando+modelo+Extreme+Gradient+Boosting&rft.jtitle=Ci%C3%AAncia+%26+saude+coletiva&rft.au=Prado%2C+Jose+Carlos&rft.au=Evsukoff%2C+Alexandre&rft.au=Andrade+Medronho%2C+Roberto+de&rft.date=2025-07-01&rft.pub=Associacao+Brasileira+de+Pos-Graduacao+em+Saude+Coletiva+-+ABRASCO&rft.issn=1413-8123&rft.volume=30&rft.issue=7&rft.spage=1&rft_id=info:doi/10.1590%2F1413-81232025307.18112024&rft.externalDBID=KPI&rft.externalDocID=A856145600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1413-8123&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1413-8123&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1413-8123&client=summon