Biomass and leaf-level gas exchange characteristics of three African savanna C₄ grass species under optimum growth conditions

C₄ savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO₂ concentration...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:African journal of ecology Ročník 47; číslo 4; s. 482 - 489
Hlavní autoři: Mantlana, K.B, Veenendaal, E.M, Arneth, A, Grispen, V, Bonyongo, C.M, Heitkonig, I.G, Lloyd, J
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.12.2009
Blackwell Publishing Ltd
Témata:
ISSN:0141-6707, 1365-2028
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract C₄ savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO₂ concentration and leaf-to-air vapour pressure deficit gradient (Dl). Digitaria eriantha showed the largest above- and below-ground biomass, high efficiency in carbon gain under light-limiting conditions, high water use efficiency (WUE) and strong stomatal sensitivity to Dl (P = 0.002; r² = 0.5). Panicum repens had a high aboveground biomass and attained high light saturated photosynthetic rates (Asat, 47 μmol m⁻² s⁻¹), stomatal conductance, (gsat, 0.25 mol m⁻² s⁻¹) at relatively high WUE. Eragrostis lehmanniana had almost half the biomass of other species, and had similar Asat and gsat but were attained at lower WUE than the other species. This species also showed the weakest stomatal response to Dl (P = 0.19, r² = 0. 1). The potential ecological significance of the contrasting patterns of biomass allocation and variations in gas exchange parameters among the species are discussed.
AbstractList C₄ savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO₂ concentration and leaf-to-air vapour pressure deficit gradient (Dl). Digitaria eriantha showed the largest above- and below-ground biomass, high efficiency in carbon gain under light-limiting conditions, high water use efficiency (WUE) and strong stomatal sensitivity to Dl (P = 0.002; r² = 0.5). Panicum repens had a high aboveground biomass and attained high light saturated photosynthetic rates (Asat, 47 μmol m⁻² s⁻¹), stomatal conductance, (gsat, 0.25 mol m⁻² s⁻¹) at relatively high WUE. Eragrostis lehmanniana had almost half the biomass of other species, and had similar Asat and gsat but were attained at lower WUE than the other species. This species also showed the weakest stomatal response to Dl (P = 0.19, r² = 0. 1). The potential ecological significance of the contrasting patterns of biomass allocation and variations in gas exchange parameters among the species are discussed.
C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration and leaf-to-air vapour pressure deficit gradient (Dl). Digitaria eriantha showed the largest above- and below-ground biomass, high efficiency in carbon gain under light-limiting conditions, high water use efficiency (WUE) and strong stomatal sensitivity to Dl (P = 0.002; r2 = 0.5). Panicum repens had a high aboveground biomass and attained high light saturated photosynthetic rates (Asat, 47 ¿mol m¿2 s¿1), stomatal conductance, (gsat, 0.25 mol m¿2 s¿1) at relatively high WUE. Eragrostis lehmanniana had almost half the biomass of other species, and had similar Asat and gsat but were attained at lower WUE than the other species. This species also showed the weakest stomatal response to Dl (P = 0.19, r2 = 0. 1). The potential ecological significance of the contrasting patterns of biomass allocation and variations in gas exchange parameters among the species are discussed
C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above‐ and below‐ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration and leaf‐to‐air vapour pressure deficit gradient (Dl). Digitaria eriantha showed the largest above‐ and below‐ground biomass, high efficiency in carbon gain under light‐limiting conditions, high water use efficiency (WUE) and strong stomatal sensitivity to Dl (P = 0.002; r2 = 0.5). Panicum repens had a high aboveground biomass and attained high light saturated photosynthetic rates (Asat, 47 μmol m−2 s−1), stomatal conductance, (gsat, 0.25 mol m−2 s−1) at relatively high WUE. Eragrostis lehmanniana had almost half the biomass of other species, and had similar Asat and gsat but were attained at lower WUE than the other species. This species also showed the weakest stomatal response to Dl (P = 0.19, r2 = 0. 1). The potential ecological significance of the contrasting patterns of biomass allocation and variations in gas exchange parameters among the species are discussed. Résumé On a fait pousser des espèces herbeuses de savane de type C4, Digitaria eriantha, Eragrostis lehmanniana et Panicum repens, dans des conditions optimales dans le but de caractériser l’allocation de leur biomasse aérienne et racinaire et la réponse de leur échange gazeux à des changements d’intensité de la lumière, de concentrations de CO2, et à un gradient déficitaire (Dl) de pression de vapeur feuille‐air. D. eriantha montrait la plus grande biomasse aérienne et racinaire, une grande efficience de l’assimilation de carbone dans des conditions de luminosité limitée, une grande efficience d’utilisation de l’eau (WUE) et une forte sensibilité des stomates à Dl (P = 0,002; r2 = 0,5). P. repens avait une grande biomasse aérienne et atteignait des taux photosynthétiques élevés en lumière saturée (Asat, 47 μmol m−2 s−1), et une conductance stomatique (gsat 0.25 mol m−2 s−1) à une WUE relativement élevée. E. lehmanniana avait une biomasse qui était presque la moitié de celle des autres espèces et avait un Asat et un gsat similaires mais qui étaient atteints à une WUE plus basse que les autres espèces. Cette espèce montrait aussi la plus faible réponse stomatique àDl (P = 0,19, r2 = 0,1). L’on discute de la signification écologique potentielle de ces schémas contrastés d’allocations de biomasse et des variations des paramètres des échanges gazeux entre les espèces.
C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens , were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration and leaf-to-air vapour pressure deficit gradient ( D l). Digitaria eriantha showed the largest above- and below-ground biomass, high efficiency in carbon gain under light-limiting conditions, high water use efficiency (WUE) and strong stomatal sensitivity to D l ( P = 0.002; r 2 = 0.5). Panicum repens had a high aboveground biomass and attained high light saturated photosynthetic rates ( A sat, 47 μmol m-2 s-1), stomatal conductance, ( g sat, 0.25 mol m-2 s-1) at relatively high WUE. Eragrostis lehmanniana had almost half the biomass of other species, and had similar A sat and g sat but were attained at lower WUE than the other species. This species also showed the weakest stomatal response to D l ( P = 0.19, r 2 = 0. 1). The potential ecological significance of the contrasting patterns of biomass allocation and variations in gas exchange parameters among the species are discussed. [PUBLICATION ABSTRACT]
Author Grispen, V.
Lloyd, J.
Mantlana, K. B.
Bonyongo, C. M.
Heitkonig, I. G.
Arneth, A.
Veenendaal, E. M.
Author_xml – sequence: 1
  fullname: Mantlana, K.B
– sequence: 2
  fullname: Veenendaal, E.M
– sequence: 3
  fullname: Arneth, A
– sequence: 4
  fullname: Grispen, V
– sequence: 5
  fullname: Bonyongo, C.M
– sequence: 6
  fullname: Heitkonig, I.G
– sequence: 7
  fullname: Lloyd, J
BookMark eNpdkc1uEzEUhUeoSKSFZ8BixWaCfxJ7BrEpUVtAFahqKyQ2V3c8duIwsYM906QrJMST8iR4SNUF3lxb95xrH3_HxZEP3hQFYXTK8nqznjIh5yWnvJpySqsppbVk0_2TYvLYOComlM1YKRVVz4rjlNY0K2dyNil-vndhgykR9C3pDNqyM3emI0tMxOz1Cv3SkFwi6t5El3qnEwmW9KtoDDm10Wn0JOEdeo9k8efXb7KM47y0NdqZRAbfmkjCtnebYZN7YdeviA6-db0LPj0vnlrsknnxUE-K2_Ozm8WH8vLLxcfF6WVpeY5TIrOK13ZGbcWlrYVmpqE1mzfImaV1PgjWIvK54m0jZCMra7icK91aJrlW4qR4e5i7w6XxLqfy4DFqlyCgg841EeM97IYIvhvLdmgSiIoLQbP59cG8jeHHYFIPG5e06Tr0JgwJWEUFreqazbL01X_SdRiiz9GA1VKy_O8si949PMZ15h620W3GyxmFESmsYSQHIzkYkcI_pLCH009neZPt5cGecZj9ox3jd5BKqDl8_XwBVzfX51dKfYMx-8uD3mIAXGaKcHvNKROUKcoqScVfIO60qA
ContentType Journal Article
Copyright 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
2009 Blackwell Publishing Ltd
Wageningen University & Research
Copyright_xml – notice: 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
– notice: 2009 Blackwell Publishing Ltd
– notice: Wageningen University & Research
DBID FBQ
BSCLL
7QG
7SN
7SS
7ST
C1K
SOI
7S9
L.6
QVL
DOI 10.1111/j.1365-2028.2008.00961.x
DatabaseName AGRIS
Istex
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA
Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
Ecology
EISSN 1365-2028
EndPage 489
ExternalDocumentID oai_library_wur_nl_wurpubs_382330
1901619211
AJE961
ark_67375_WNG_QTSFQ77Z_7
US201301701860
Genre article
Feature
GeographicLocations Africa
GeographicLocations_xml – name: Africa
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23M
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFMIJ
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIB
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
OIG
ANHLU
7QG
7SN
7SS
7ST
C1K
SOI
7S9
L.6
08R
0R
31
3N
AAJUZ
AAPBV
GA
HZ
IA
IPNFZ
KM
NF
P4A
PQEST
QVL
RIG
WT
XHC
Y3
ID FETCH-LOGICAL-f2961-a1f729f40f826f93c1eb0915ba21f09eb031daa2572db36b68fe2657cdf162c73
IEDL.DBID DRFUL
ISSN 0141-6707
IngestDate Mon May 10 21:34:02 EDT 2021
Thu Sep 04 20:10:46 EDT 2025
Mon Nov 10 03:10:56 EST 2025
Sun Sep 21 06:19:39 EDT 2025
Tue Nov 11 03:31:32 EST 2025
Wed Dec 27 19:14:59 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-f2961-a1f729f40f826f93c1eb0915ba21f09eb031daa2572db36b68fe2657cdf162c73
Notes http://dx.doi.org/10.1111/j.1365-2028.2008.00961.x
istex:B41BC2367AC57DBF1EE5F49FE102FBC95CD90FC9
ark:/67375/WNG-QTSFQ77Z-7
ArticleID:AJE961
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 196610081
PQPubID 36372
PageCount 8
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_382330
proquest_miscellaneous_1803089914
proquest_journals_196610081
wiley_primary_10_1111_j_1365_2028_2008_00961_x_AJE961
istex_primary_ark_67375_WNG_QTSFQ77Z_7
fao_agris_US201301701860
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate December 2009
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: December 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Nairobi
PublicationTitle African journal of ecology
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Roderick, M.L. & Cochrane, M.J. (2002) On the conservative nature of the leaf mass-area relationship. Anal. Bot. 89, 537-542.
Kawamitsu, Y., Yoda, S. & Agata, W. (1993) Humidity pre-treatment affects the response of stomata and CO2 assimilation to vapour pressure difference in C3 and C4 plants. Plant Cell Physiol. 34, 113-119.
Ehleringer, J.R. & Pearcy, R.W. (1983) Variations in quantum yields among C3 and C4 plants. Plant Physiol. 73, 555-559.
Condon, A.G., Richards, R.A., Rebetzke, G.J. & Farquhar, G.D. (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci. 42, 122-131.
Lawlor, D.W. (2001) Photosynthesis, 3rd edn. Bios. Scientific Publishers, Oxford.
Hetherington, A.M. & Woodward, F.I. (2003) The role of stomata in sensing and driving environmental change. Nature 424, 901-908.
Eissenstat, D.M. (1991) On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytol. 118, 63-68.
Veenendaal, E.M., Shushu, D.D. & Scurlock, J.M.O. (1993) Responses to shading of seedlings of savanna grasses (with different C4 photosynthetic pathways) in Botswana. J. Trop. Ecol. 9, 213-229.
Maroco, J.P., Pereira, J.S. & Chaves, M.M. (1997) Stomatal responses to leaf-to-air vapour pressure deficit in Sahelian species. Aust. J. Plant Physiol. 24, 381-387.
Anderson, L.J.H., Maherali, H., Johnson, H.B., Polley, H.W. & Jackson, R.B. (2001) Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3-C4 grassland. Glob. Chang. Biol. 7, 693-707.
Gibbs Russel, G.E., Watson, L., Koekemoer, M., Smook, L., Barker, N.P., Anderson, H.M. & Dallwitz, M.J. (1990) Grasses of Southern Africa. Botanical Research Institute, Pretoria, South Africa.
Hatch, M.D. (1987) C4 photosynthesis - a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta 895, 81-106.
Ryser, P. & Lambers, H. (1995) Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 170, 251-265.
Lambers, H. & Poorter, H. (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 23, 87-261.
Roumet, C. & Roy, J. (1996) Prediction of the growth response to elevated CO2: a search for physiological criteria in closely related grass species. New Phytol. 134, 615-621.
Farquhar, G.D. & Sharkey, T.D. (1982) Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33, 317-346.
Ripley, B.S., Gilbert, M.E., Ibrahim, D.G. & Osborne, C.P. (2007) Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J. Exp. Bot. 58, 1351-1363.
Bogdan, A.V. (1977) Tropical Pasture and Fodder Plants (Grasses and Legumes). Longman, London and New York.
Baruch, Z. (1994) Responses to drought and flooding in tropical forage grasses: I. - production and allocation of biomass, leaf growth and mineral nutrients. Plant Soil 164, 87-96.
Von Caemmerer, S. (2000) Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Collingwood, Australia.
Van Bommel, F.P.J., Heitkonig, I.M.A., Epema, G.F., Ringrose, S., Bonyongo, C. & Veenendaal, E.M. (2006) Remotely sensed habitat indicators for predicting distribution of impala (Aepyceros melampus) in the Okavango Delta, Botswana. J. Trop. Ecol. 22, 101-110.
Jones, M.B. (1987) The photosynthetic characteristics of papyrus in a tropical swamp. Oecologia 71, 355-359.
Bunce, J.A. (1983) Differential sensitivity to humidity of daily photosynthesis in the field in C3 and C4 species. Oecologia 57, 262-265.
Polley, H.W., Norman, J.M., Arkerbauer, T.J., Walter-Shea, E.A., Greegor, D.H. & Bramer, B. (1992) Leaf gas exchange of Andropogon gerardii Vitman, Panicum virgatum L., and Sorghastrum nutans (L.) Nash in a tallgrass prairie. J. Geophys. Res. 97, 837-844.
Beale, C.V., Morison, J.I.L. & Long, S.P. (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric. For. Meteorol. 96, 103-115.
Baruch, Z., Ludlow, M.M. & Davis, R. (1985) Photosynthetic responses of native and introduced C4 grasses from Venezuelan savannas. Oecologia 67, 338-393.
1993; 9
1987; 71
1997; 24
1982; 33
1983; 73
1993
1991; 118
1992; 97
1985; 67
1983; 57
2007; 58
1977
1995; 170
1993; 34
2003; 424
2001; 7
1990
2001
2002; 42
2000
1987; 895
2006; 22
2002; 89
1994; 164
1999; 96
1992; 23
1996; 134
References_xml – reference: Kawamitsu, Y., Yoda, S. & Agata, W. (1993) Humidity pre-treatment affects the response of stomata and CO2 assimilation to vapour pressure difference in C3 and C4 plants. Plant Cell Physiol. 34, 113-119.
– reference: Bogdan, A.V. (1977) Tropical Pasture and Fodder Plants (Grasses and Legumes). Longman, London and New York.
– reference: Baruch, Z. (1994) Responses to drought and flooding in tropical forage grasses: I. - production and allocation of biomass, leaf growth and mineral nutrients. Plant Soil 164, 87-96.
– reference: Gibbs Russel, G.E., Watson, L., Koekemoer, M., Smook, L., Barker, N.P., Anderson, H.M. & Dallwitz, M.J. (1990) Grasses of Southern Africa. Botanical Research Institute, Pretoria, South Africa.
– reference: Hatch, M.D. (1987) C4 photosynthesis - a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta 895, 81-106.
– reference: Lawlor, D.W. (2001) Photosynthesis, 3rd edn. Bios. Scientific Publishers, Oxford.
– reference: Baruch, Z., Ludlow, M.M. & Davis, R. (1985) Photosynthetic responses of native and introduced C4 grasses from Venezuelan savannas. Oecologia 67, 338-393.
– reference: Jones, M.B. (1987) The photosynthetic characteristics of papyrus in a tropical swamp. Oecologia 71, 355-359.
– reference: Von Caemmerer, S. (2000) Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Collingwood, Australia.
– reference: Condon, A.G., Richards, R.A., Rebetzke, G.J. & Farquhar, G.D. (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci. 42, 122-131.
– reference: Hetherington, A.M. & Woodward, F.I. (2003) The role of stomata in sensing and driving environmental change. Nature 424, 901-908.
– reference: Anderson, L.J.H., Maherali, H., Johnson, H.B., Polley, H.W. & Jackson, R.B. (2001) Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3-C4 grassland. Glob. Chang. Biol. 7, 693-707.
– reference: Veenendaal, E.M., Shushu, D.D. & Scurlock, J.M.O. (1993) Responses to shading of seedlings of savanna grasses (with different C4 photosynthetic pathways) in Botswana. J. Trop. Ecol. 9, 213-229.
– reference: Beale, C.V., Morison, J.I.L. & Long, S.P. (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric. For. Meteorol. 96, 103-115.
– reference: Bunce, J.A. (1983) Differential sensitivity to humidity of daily photosynthesis in the field in C3 and C4 species. Oecologia 57, 262-265.
– reference: Ripley, B.S., Gilbert, M.E., Ibrahim, D.G. & Osborne, C.P. (2007) Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J. Exp. Bot. 58, 1351-1363.
– reference: Roumet, C. & Roy, J. (1996) Prediction of the growth response to elevated CO2: a search for physiological criteria in closely related grass species. New Phytol. 134, 615-621.
– reference: Maroco, J.P., Pereira, J.S. & Chaves, M.M. (1997) Stomatal responses to leaf-to-air vapour pressure deficit in Sahelian species. Aust. J. Plant Physiol. 24, 381-387.
– reference: Roderick, M.L. & Cochrane, M.J. (2002) On the conservative nature of the leaf mass-area relationship. Anal. Bot. 89, 537-542.
– reference: Ehleringer, J.R. & Pearcy, R.W. (1983) Variations in quantum yields among C3 and C4 plants. Plant Physiol. 73, 555-559.
– reference: Lambers, H. & Poorter, H. (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 23, 87-261.
– reference: Farquhar, G.D. & Sharkey, T.D. (1982) Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33, 317-346.
– reference: Van Bommel, F.P.J., Heitkonig, I.M.A., Epema, G.F., Ringrose, S., Bonyongo, C. & Veenendaal, E.M. (2006) Remotely sensed habitat indicators for predicting distribution of impala (Aepyceros melampus) in the Okavango Delta, Botswana. J. Trop. Ecol. 22, 101-110.
– reference: Polley, H.W., Norman, J.M., Arkerbauer, T.J., Walter-Shea, E.A., Greegor, D.H. & Bramer, B. (1992) Leaf gas exchange of Andropogon gerardii Vitman, Panicum virgatum L., and Sorghastrum nutans (L.) Nash in a tallgrass prairie. J. Geophys. Res. 97, 837-844.
– reference: Ryser, P. & Lambers, H. (1995) Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 170, 251-265.
– reference: Eissenstat, D.M. (1991) On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytol. 118, 63-68.
– volume: 71
  start-page: 355
  year: 1987
  end-page: 359
  article-title: The photosynthetic characteristics of papyrus in a tropical swamp
  publication-title: Oecologia
– volume: 97
  start-page: 837
  year: 1992
  end-page: 844
  article-title: Leaf gas exchange of Vitman, L., and (L.) Nash in a tallgrass prairie
  publication-title: J. Geophys. Res.
– volume: 170
  start-page: 251
  year: 1995
  end-page: 265
  article-title: Root and leaf attributes accounting for the performance of fast‐ and slow‐growing grasses at different nutrient supply
  publication-title: Plant Soil
– volume: 58
  start-page: 1351
  year: 2007
  end-page: 1363
  article-title: Drought constraints on C photosynthesis: stomatal and metabolic limitations in C and C subspecies of A
  publication-title: J. Exp. Bot.
– volume: 33
  start-page: 317
  year: 1982
  end-page: 346
  article-title: Stomatal conductance and photosynthesis
  publication-title: Ann. Rev. Plant Physiol.
– volume: 23
  start-page: 87
  year: 1992
  end-page: 261
  article-title: Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences
  publication-title: Adv. Ecol. Res.
– volume: 24
  start-page: 381
  year: 1997
  end-page: 387
  article-title: Stomatal responses to leaf‐to‐air vapour pressure deficit in Sahelian species
  publication-title: Aust. J. Plant Physiol.
– volume: 57
  start-page: 262
  year: 1983
  end-page: 265
  article-title: Differential sensitivity to humidity of daily photosynthesis in the field in C and C species
  publication-title: Oecologia
– year: 2001
– volume: 89
  start-page: 537
  year: 2002
  end-page: 542
  article-title: On the conservative nature of the leaf mass‐area relationship
  publication-title: Anal. Bot.
– volume: 134
  start-page: 615
  year: 1996
  end-page: 621
  article-title: Prediction of the growth response to elevated CO : a search for physiological criteria in closely related grass species
  publication-title: New Phytol.
– year: 2000
– volume: 67
  start-page: 338
  year: 1985
  end-page: 393
  article-title: Photosynthetic responses of native and introduced C grasses from Venezuelan savannas
  publication-title: Oecologia
– volume: 34
  start-page: 113
  year: 1993
  end-page: 119
  article-title: Humidity pre‐treatment affects the response of stomata and CO assimilation to vapour pressure difference in C and C plants
  publication-title: Plant Cell Physiol.
– year: 1977
– year: 1990
– volume: 118
  start-page: 63
  year: 1991
  end-page: 68
  article-title: On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks
  publication-title: New Phytol.
– volume: 73
  start-page: 555
  year: 1983
  end-page: 559
  article-title: Variations in quantum yields among C and C plants
  publication-title: Plant Physiol.
– volume: 22
  start-page: 101
  year: 2006
  end-page: 110
  article-title: Remotely sensed habitat indicators for predicting distribution of impala ( ) in the Okavango Delta, Botswana
  publication-title: J. Trop. Ecol.
– volume: 96
  start-page: 103
  year: 1999
  end-page: 115
  article-title: Water use efficiency of C perennial grasses in a temperate climate
  publication-title: Agric. For. Meteorol.
– volume: 7
  start-page: 693
  year: 2001
  end-page: 707
  article-title: Gas exchange and photosynthetic acclimation over subambient to elevated CO in a C ‐C grassland
  publication-title: Glob. Chang. Biol.
– volume: 164
  start-page: 87
  year: 1994
  end-page: 96
  article-title: Responses to drought and flooding in tropical forage grasses: I. – production and allocation of biomass, leaf growth and mineral nutrients
  publication-title: Plant Soil
– volume: 895
  start-page: 81
  year: 1987
  end-page: 106
  article-title: C photosynthesis – a unique blend of modified biochemistry, anatomy and ultrastructure
  publication-title: Biochim. Biophys. Acta
– volume: 424
  start-page: 901
  year: 2003
  end-page: 908
  article-title: The role of stomata in sensing and driving environmental change
  publication-title: Nature
– volume: 9
  start-page: 213
  year: 1993
  end-page: 229
  article-title: Responses to shading of seedlings of savanna grasses (with different C photosynthetic pathways) in Botswana
  publication-title: J. Trop. Ecol.
– year: 1993
– volume: 42
  start-page: 122
  year: 2002
  end-page: 131
  article-title: Improving intrinsic water‐use efficiency and crop yield
  publication-title: Crop Sci.
SSID ssj0008464
Score 1.8135267
Snippet C₄ savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of...
C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of...
C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens , were grown under optimum growth conditions with the aim of...
SourceID wageningen
proquest
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 482
SubjectTerms above- and below-ground biomass
aboveground biomass
belowground biomass
Biomass
Biomass energy
botswana
C4 grasses
C4 plants
carbon
Carbon dioxide
Conductance
C₄ grasses
Digitaria eriantha
drought
dry matter partitioning
elevated co2
Eragrostis lehmanniana
Gas exchange
gas exchange characteristics
Gases
Grasses
Grasslands
Growth conditions
humidity
leaf-to-air vapour pressure deficit
Light intensity
Okavango Delta
Panicum repens
photosynthesis
Plant growth
plants
responses
Savannahs
savannas
stomata
Stomatal conductance
stomatal movement
Vapor pressure
Water use
Water use efficiency
yield
Title Biomass and leaf-level gas exchange characteristics of three African savanna C₄ grass species under optimum growth conditions
URI https://api.istex.fr/ark:/67375/WNG-QTSFQ77Z-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2028.2008.00961.x
https://www.proquest.com/docview/196610081
https://www.proquest.com/docview/1803089914
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F382330
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008464
  issn: 0141-6707
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZQB9JeuKOVATIS4i3IcRLbeZxGC0JTxdgK014sJ7E7ROugpKXlCX4Cv5FfwjlJWojEE-Ipjpyb4-8cf7bPhZBniWKpAqYbcCsYLt3kgTIyCUxmFY8sc3mzg__-RE4m6uIifdvZP6EvTBsfYrfghpLR6GsUcJPVfSFvLLRggNyaRKYifAF8co8DjJMB2Xv5bjw92ellGGnbSN9xGAjJZN-u56_PggHHmRJ4K_7yTY-E7q9B3n3jANXntc3ANL71P5t0m9zs6Ck9avF0h1yz_i650Sas_AqlUb4tXZZN6R75BrULoODU-ILOrXE_v_-YoykSnZma2k3rWkzzfmRoWjq6BBxZ2mYq8rQ2QOq9occxnVX4PHQChXk8RTe3ipag2xarBdSV6-UVhWl80Vqb3SfT8ej8-HXQpXUIHIfmBCZ0wOhdzBxMbVwa5aHNgLUkmeGhYymcRGFhDOgSXmSRyIRylotE5oULBc9l9IAMfOntAaERs66InRJJxuIiC00OP8yFsUmEQqI3JAfQf9rMoG16esZxmxYD0CvBhuR506n6cxvVQ5vqExq5yUR_mLzSp-dn41MpL7UcksNtr-tOvmsNektgWCR4w9NdLQgm7rYYb8sVXKIwFBDQ73hIot9g0R5zRNUaw3p3mNDrVaX9HA8gg7XGrdkIPjBpsLL7wD-ma4ASjSjpkogiSvRGH70ZQeHhP953SPZ5lxuDhY_IYFmt7GNyPf-y_FhXTzph-gVL0R8D
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQBmIv3KeVcTES4i3IzsV2HqfRMqBUjLUw7cVyErsg2gQlLS1P8BP4jfwSzknSQiSeEE9x5Nwcf-f4s30uhDyOFIsVMF3Pt4Lh0k3qKSMjzyRW-YFlLq138N8N5Wikzs_jN206IPSFaeJDbBfcUDJqfY0CjgvSXSmvTbRghNzYRMaCPwVCuRsCqgDuu8_eDibDrWKGobYJ9R1yT0gmu4Y9f30WjDjOFEBc8Z-vOyx0bwUCn9ceUF1iW49Mg-v_tU03yLWWoNKjBlE3ySWb3yJXmpSVX6HUTzeli6Iu3SbfoHYOJJyaPKMza9zP7z9maIxEp6aidt04F9O0GxuaFo4uAEmWNrmKcloZoPW5occhnZb4PHQDhZk8RUe3khag3ebLOdQVq8UHChP5rLE3u0Mmg_74-MRrEzt4zofmeIY74PQuZA4mNy4OUm4T4C1RYnzuWAwnAc-MAW3iZ0kgEqGc9UUk08xx4acy2Cc7eZHbA0IDZl0WOiWihIVZwk0KP8zx0ERCIdXrkQPoQG2m0DY9OfNxoxZD0CvBeuRJ3av6cxPXQ5vyE5q5yUi_Hz3Xp-OzwamUF1r2yOGm23Ur4ZUGzSUwMBK84dG2FkQT91tMboslXKIwGBAQ8LBHgt9o0Tlmiao0BvZuQaFXy1LnMzyAFFYaN2cD-MCoBsv2A_-YsAFKNKKkTSOKKNFrffSyD4W7_3jfQ3L1ZPx6qIcvRq8OyZ7fZspg_B7ZWZRLe59cTr8sPlblg1ayfgF7ayLz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFLZQB9Bc2NGUYTES4hYUZ7Hd42imYauqGWYKo7lYTmIXROuMkpaWE_wEfiO_hPeStBCJE-IUR87i5S2f7bcQ8iyW_kAC0vUCw33cusk8qUXs6dTIIDS-zeoT_PcjMR7L8_PBcZsOCH1hmvgQ2w035IxaXiODm8vcdrm8NtECDbmxiRxw9gIA5U6EOWV6ZOfoXTIZbQUzqNom1HfEPC580TXs-eu3QONYXQBwxTFfd1Do7goY3tUeUF1gW2um5OZ_7dMtcqMFqPSgoajb5Ipxd8i1JmXlVygNs03poqhLd8k3qJ0DCKfa5XRmtP35_ccMjZHoVFfUrBvnYpp1Y0PTwtIFUJKhTa4iRysNsN5pehjRaYnfQzdQWMlTdHQraQHSbb6cQ12xWnyksJDPG3uze2SSDM8OX3ltYgfPBtAdTzMLmN5GvoXFjR2EGTMp4JY41QGz_gBuQpZrDdIkyNOQp1xaE_BYZLllPMhEeJ_0XOHMHqGhb2weWcnj1I_ylOkMBsyySMdcItTrkz2YQKWn0Dc1OQ3woBZD0Evu98nzelbVZRPXQ-nyM5q5iVh9GL9UJ2enyYkQF0r0yf5m2lXL4ZUCycUxMBL84em2FlgTz1u0M8USHpEYDAgAeNQn4W9qUQ6zRFUKA3u3RKFWy1K5GV6ACyuFh7MhNDCuiWXbwD8WbEAlCqmkTSOKVKLW6uDNEAoP_vG9J-T68VGiRq_Hb_fJbtAmyvDZQ9JblEvziFzNviw-VeXjlrF-AdIaIm4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomass+and+leaf-level+gas+exchange+characteristics+of+three+African+savanna+C%E2%82%84+grass+species+under+optimum+growth+conditions&rft.jtitle=African+journal+of+ecology&rft.au=Mantlana%2C+K.B&rft.au=Veenendaal%2C+E.M&rft.au=Arneth%2C+A&rft.au=Grispen%2C+V&rft.date=2009-12-01&rft.pub=Oxford%2C+UK+%3A+Blackwell+Publishing+Ltd&rft.issn=0141-6707&rft.eissn=1365-2028&rft.volume=47&rft.issue=4&rft.spage=482&rft.epage=489&rft_id=info:doi/10.1111%2Fj.1365-2028.2008.00961.x&rft.externalDocID=US201301701860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-6707&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-6707&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-6707&client=summon