Filtering based multi-innovation extended stochastic gradient algorithm for Hammerstein nonlinear system modeling
This paper considers parameter estimation problems of Hammerstein finite impulse response moving average (FIR-MA) systems. In order to provide highly accurate parameter estimates and improve the convergence rate, a data filtering based multi-innovation extended stochastic gradient algorithm is prese...
Uloženo v:
| Vydáno v: | Applied mathematical modelling Ročník 39; číslo 18; s. 5724 - 5732 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.09.2015
|
| Témata: | |
| ISSN: | 0307-904X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper considers parameter estimation problems of Hammerstein finite impulse response moving average (FIR-MA) systems. In order to provide highly accurate parameter estimates and improve the convergence rate, a data filtering based multi-innovation extended stochastic gradient algorithm is presented to estimate the parameters of Hemmerstein FIR-MA systems by using the current innovation and past innovations. The simulation results show that the proposed algorithm can effectively estimate the parameters of the Hammerstein FIR-MA systems. |
|---|---|
| ISSN: | 0307-904X |
| DOI: | 10.1016/j.apm.2013.06.016 |