A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems

This paper proposes a generalized extended stochastic gradient (GESG) algorithm for estimating the parameters of a class of Wiener nonlinear autoregressive moving average systems using the gradient search. In order to improve the convergence rates of the GESG algorithm, a multi-innovation GESG algor...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation Vol. 247; pp. 218 - 224
Main Authors: Hu, Yuanbiao, Liu, Baolin, Zhou, Qin
Format: Journal Article
Language:English
Published: Elsevier Inc 15.11.2014
Subjects:
ISSN:0096-3003, 1873-5649
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a generalized extended stochastic gradient (GESG) algorithm for estimating the parameters of a class of Wiener nonlinear autoregressive moving average systems using the gradient search. In order to improve the convergence rates of the GESG algorithm, a multi-innovation GESG algorithm is derived. The simulation results indicate that the proposed algorithms can effectively estimate the parameters of a class of output nonlinear systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.08.096