A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems

This paper proposes a generalized extended stochastic gradient (GESG) algorithm for estimating the parameters of a class of Wiener nonlinear autoregressive moving average systems using the gradient search. In order to improve the convergence rates of the GESG algorithm, a multi-innovation GESG algor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 247; s. 218 - 224
Hlavní autoři: Hu, Yuanbiao, Liu, Baolin, Zhou, Qin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.11.2014
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a generalized extended stochastic gradient (GESG) algorithm for estimating the parameters of a class of Wiener nonlinear autoregressive moving average systems using the gradient search. In order to improve the convergence rates of the GESG algorithm, a multi-innovation GESG algorithm is derived. The simulation results indicate that the proposed algorithms can effectively estimate the parameters of a class of output nonlinear systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.08.096