A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems

This paper proposes a generalized extended stochastic gradient (GESG) algorithm for estimating the parameters of a class of Wiener nonlinear autoregressive moving average systems using the gradient search. In order to improve the convergence rates of the GESG algorithm, a multi-innovation GESG algor...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 247; s. 218 - 224
Hlavní autori: Hu, Yuanbiao, Liu, Baolin, Zhou, Qin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 15.11.2014
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes a generalized extended stochastic gradient (GESG) algorithm for estimating the parameters of a class of Wiener nonlinear autoregressive moving average systems using the gradient search. In order to improve the convergence rates of the GESG algorithm, a multi-innovation GESG algorithm is derived. The simulation results indicate that the proposed algorithms can effectively estimate the parameters of a class of output nonlinear systems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.08.096