A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems

This paper proposes a generalized extended stochastic gradient (GESG) algorithm for estimating the parameters of a class of Wiener nonlinear autoregressive moving average systems using the gradient search. In order to improve the convergence rates of the GESG algorithm, a multi-innovation GESG algor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 247; S. 218 - 224
Hauptverfasser: Hu, Yuanbiao, Liu, Baolin, Zhou, Qin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.11.2014
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a generalized extended stochastic gradient (GESG) algorithm for estimating the parameters of a class of Wiener nonlinear autoregressive moving average systems using the gradient search. In order to improve the convergence rates of the GESG algorithm, a multi-innovation GESG algorithm is derived. The simulation results indicate that the proposed algorithms can effectively estimate the parameters of a class of output nonlinear systems.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.08.096